本書全面且系統地介紹了機器學習測試技術與質量體系建設,分為5部分,共15章。
第一部分(第1~4章)涵蓋了機器學習、Python編程、數據分析的基礎知識;
第二部分(第5~7章)介紹了大數據基礎、大數據測試指南及相關工具實踐;
第三部分(第8~10章)講解了機器學習測試基礎、特徵專項測試及模型算法評估測試;
第四部分(第11~13章)介紹了模型評估平台實踐、機器學習工程技術及機器學習的持續交付流程;
第五部分(第14章和第15章)探討了AI(Artificial Intelligence)在測試領域的實踐及AI時代測試工程師的未來。
本書能夠幫助讀者了解機器學習是如何工作的,了解機器學習的質量保障是如何進行的。
工程開發人員和測試工程師通過閱讀本書,可以系統化地了解大數據測試、
特徵測試及模型評估等知識;算法工程師通過閱讀本書,
可以學習模型評測的方法和拓寬模型工程實踐的思路;
技術專家和技術管理者通過閱讀本書,可以了解機器學習質量保障與工程效能的建設方案。