東京大學資料科學家養成全書 | 拾書所

東京大學資料科學家養成全書

$ 566 元 原價 616

書籍詳介

內容簡介:

「大數據會消失,資料科學不會」
「所有的科學都是資料科學」
―――資訊科學時代最需要閱讀的一本書―――

東京大學資料科學人氣講座全收錄————
★傳說中的東大松尾研究室超熱門課程,第一手內容完整公開!
★用Python學習基本的程式撰寫,邊做邊學,鍛鍊最強的資料科學技能!
★收錄大量練習題和綜合題演練,打好理論基本功,具體應用於實務現場!
★體驗資料科學的魅力,培養整合跨領域課題的創造力!

所謂科學,是從世界上混沌的現象裡找出本質,逐步解決各式各樣的問題。在日漸龐大的各種資料當中,運用科學的力量解決各種問題,便可說是資料科學。
資料科學不僅只是數學(統計、機率、機器學習等),更是借用IT等各種力量,不斷挑戰世界上的難題與背後課題的綜合領域。
運用這樣資料科學和人工智慧的力量,減少浪費與沒有效率的事物,進一步創造出新價值,可以讓這個世界更加美好。

█ 動手操作實際的資料,大量練習題馬上學、馬上練、馬上懂!

本書廣泛說明資料科學不可不知的基礎事項,蒐羅豐富的重要關鍵知識和好用的參考資料,成為學習資料科學的地圖與羅盤。
書中主要使用Python來學習基本的程式撰寫技巧,以及資料的取得、讀取、操作等,含括各式各樣Python函式庫的使用方式、機率統計的手法、機器學習(監督式學習、非監督式學習、性能調校),還有讓Python高速化的方法和Spark的簡單操作等。
書中說明如何實際將現場的資料進行加工與分析,如何具體運用於市場行銷或金融等,使用何種手法來撰寫程式比較好,以及組合程式的技巧和流程。除了理論解說,也介紹實務性的使用方法,可立即上手應用。
收錄各種類型的實作練習題和綜合問題,以實際的問題為前提來思考,一邊動手實踐。

█ 本書的出版緣由

本書以2017年至2018年於東京大學舉辦的「全球消費智慧捐贈講座」講義和線上課程教材為基礎,用簡潔易懂的形式彙整編纂而成。
這個廣受歡迎的熱門講座首度出版,原因有三:
首先,希望讓更多讀者了解資料科學,培養資料分析技能。資訊時代各行各業都需要資料分析的人才,了解應該具備哪些知識、有何種處理手法、能達成什麼樣的目標,善用資料科學將是致勝的關鍵。
其次,雖然線上資源豐富又方便取得,但並非隨時都能在線上學習。藉由書籍的形式,可因地制宜反覆演練複習。
第三,以學習效果來說,書本的編排有助於深入思考,成效更佳。

█ 本書的目標讀者

▌有程式設計經驗、完成理科大一大二程度數學,以及對於學習資料科學有高度意願的一般人士
▌藉由本書,可掌握資料科學入門程度至中級程度的內容,已達中級程度以上者也能參酌本書來複習資料分析相關知識
▌對於目前備受矚目的深度學習,可透過本書掌握學習深度學習之前必需的基礎技能

█ 在本書裡學到的東西

▌Python/Numpy/Scipy/Pandas/Matplotlib的基礎
▌機率/統計/推論/迴歸的基礎
▌使用Numpy/Scipy進行科學計算
▌使用Pandas進行資料加工處理(遺漏資料/異常值的處理、時間序列資料的處理)
▌使用Matplotlib進行資料視覺化
▌機器學習(多元線性迴歸、邏輯迴歸、決策樹、k-NN、聚類分析、主成分分析、購物籃分析、模型調校)

目錄:

序言

【Chapter 1 本書的概要與Python的基礎】

▌1-1 資料科學家的工作
1-1-1 資料科學家的工作
1-1-2 資料分析的流程
1-1-3 本書的架構
1-1-4 對閱讀本書有幫助的文獻
1-1-5 動手來學習吧

▌1-2 Python的基礎
1-2-1 Jupyter Notebook的使用方法
1-2-2 Python的基礎
1-2-3 串列型別與字典型別
1-2-4 條件分歧與迴圈
1-2-5 函式
1-2-6 類別與實例

【Chapter 2 科學計算、資料加工、圖形描繪函式庫的使用方法基礎】

▌2-1 用於資料分析的函式庫
2-1-1 函式庫的匯入
2-1-2 Magic Command
2-1-3 匯入用於本章的函式庫

▌2-2 Numpy的基礎
2-2-1 Numpy的匯入
2-2-2 陣列的操作
2-2-3 亂數
2-2-4 矩陣

▌2-3 Scipy的基礎
2-3-1 Scipy的函式庫匯入
2-3-2 矩陣運算
2-3-3 牛頓法

▌2-4 Pandas的基礎
2-4-1 Pandas的函式庫匯入
2-4-2 Series的使用方法
2-4-3 DataFrame的使用方法
2-4-4 行列的操作
2-4-5 資料的抽出
2-4-6 資料的刪除與結合
2-4-7 統計
2-4-8 值的排序
2-4-9 nan (null)的判斷

▌2-5 Matplotlib的基礎
2-5-1 使用Matplotlib的準備工作
2-5-2 散佈圖
2-5-3 圖形的分割
2-5-4 函數圖形的描繪
2-5-5 直方圖

【Chapter 3 敘述統計與簡單迴歸分析】

▌3-1 統計分析的種類
3-1-1 敘述統計與推論統計
3-1-2 匯入用於本章的函式庫

▌3-2 資料的讀取與對話
3-2-1 讀取網路等處公開的對象資料
3-2-2 資料的讀取與確認
3-2-3 確認資料的性質
3-2-4 量的資料與質的資料

▌3-3 敘述統計
3-3-1 直方圖
3-3-2 平均、中位數、眾數
3-3-3 變異數、標準差
3-3-4 摘要統計量與百分位數
3-3-5 箱型圖
3-3-6 變異係數
3-3-7 散佈圖與相關係數
3-3-8 描繪所有變數的直方圖與散佈圖

▌3-4 簡單迴歸分析
3-4-1 簡單線性迴歸分析
3-4-2 決定係數

【Chapter 4 機率與統計的基礎】

▌4-1 學習機率與統計的準備工作
4-1-1 本章的背景知識
4-1-2 匯入用於本章的函式庫

▌4-2 機率
4-2-1 數學機率
4-2-2 統計機率
4-2-3 條件機率與乘法定理
4-2-4 獨立與相關
4-2-5 貝氏定理

▌4-3 機率變數與機率分布
4-3-1 機率變數、機率函數、分布函數、期望值
4-3-2 各種分布函數
4-3-3 核密度函數

▌4-4 應用:多元機率分布
4-4-1 聯合機率函數與邊際機率函數
4-4-2 條件機率函數與條件期望值
4-4-3 獨立的定義與連續分布

▌4-5 推論統計學
4-5-1 大數法則
4-5-2 中央極限定理
4-5-3 樣本分布

▌4-6 統計推論
4-6-1 估計量與點估計
4-6-2 無偏性與一致性
4-6-3 區間估計
4-6-4 計算估計量

▌4-7 統計檢驗
4-7-1 檢驗
4-7-2 第一型錯誤與第二型錯誤
4-7-3 檢驗大數據的注意事項

【Chapter 5 使用Python進行科學計算(Numpy與Scipy)】

▌5-1 概要與事前準備
5-1-1 本章的概要
5-1-2 匯入用於本章的函式庫

▌5-2 使用Numpy計算之應用
5-2-1 索引的參照
5-2-2 Numpy的運算處理
5-2-3 陣列操作與廣播

▌5-3 使用Scipy計算之應用
5-3-1 內插
5-3-2 線性代數:矩陣分解
5-3-3 積分與微分方程式
5-3-4 最佳化

【Chapter 6 使用Pandas進行資料加工處理】

▌6-1 概要與事前準備
6-1-1 匯入用於本章的函式庫

▌6-2 Pandas的基本資料操作
6-2-1 階層型索引
6-2-2 資料的結合
6-2-3 資料的操作與變換
6-2-4 資料的聚合與群組運算

▌6-3 遺漏資料與異常值處理的基礎
6-3-1 遺漏資料的處理方法
6-3-2 異常資料的處理方法

▌6-4 時間序列資料處理的基礎
6-4-1 時間序列資料的處理與變換
6-4-2 移動平均

【Chapter 7 使用Matplotlib進行資料視覺化】

▌7-1 資料的視覺化
7-1-1 關於資料的視覺化
7-1-2 匯入用於本章的函式庫

▌7-2 資料視覺化的基礎
7-2-1 長條圖
7-2-2 圓形圖

▌7-3 應用:金融資料的視覺化
7-3-1 將金融資料視覺化
7-3-2 顯示K線的函式庫

▌7-4 應用:思考分析結果的表現方式
7-4-1 關於資料製作的重點

【Chapter 8 機器學習的基礎(監督式學習)】

▌8-1 機器學習概觀
8-1-1 何謂機器學習?
8-1-2 監督式學習
8-1-3 非監督式學習
8-1-4 強化學習
8-1-5 匯入用於本章的函式庫

▌8-2 多元線性迴歸
8-2-1 讀取汽車售價資料
8-2-2 資料的整理
8-2-3 模型建構與評估
8-2-4 模型建構與模型評估流程總結

▌8-3 邏輯迴歸
8-3-1 邏輯迴歸的範例
8-3-2 資料的整理
8-3-3 模型建構與評估
8-3-4 藉由縮放來提高預測準確度

▌8-4 具正則化項的迴歸:Lasso迴歸、Ridge迴歸
8-4-1 Lasso迴歸、Ridge迴歸的特徵
8-4-2 多元線性迴歸與Ridge迴歸的比較

▌8-5 決策樹
8-5-1 蕈類資料集
8-5-2 資料的整理
8-5-3 熵:不純度的指標
8-5-4 資訊獲利:測量分歧條件的有用性
8-5-5 決策樹的模型建構

▌8-6 k-NN(K最近鄰演算法)
8-6-1 k-NN的模型建構

▌8-7 支援向量機
8-7-1 支援向量機的模型建構

【Chapter 9 機器學習的基礎(非監督式學習)】

▌9-1 非監督式學習
9-1-1 非監督式模型的種類
9-1-2 匯入用於本章的函式庫

▌9-2 聚類分析
9-2-1 k-means法
9-2-2 使用k-means法進行聚類分析<

Brand Slider