√ 深入淺出地介紹自然語言處理和機器學習技術
√ 透過本書,讀者將學習和理解:
★ 概率論、資訊理論、貝葉斯法則等基礎知識
★ 最佳化問題、最大似然估計、梯度下降法
★ 機器學習和深度學習的熱門話題
★ 程式最佳化的方法
★ PageRank和相似度計算的原理
★ 搜尋引擎的原理、架構和核心模組
★ 各種推薦演算法的原理和工作機制
★ 自然語言處理和對話系統等技術難題
自然語言處理是研究人機之間用自然語言通信的理論和方法,是人工智慧領域的一個重要分支,有著非常廣泛的應用空間。
本書結合作者多年學習和從事自然語言處理相關工作的經驗,力圖用生動的方式深入淺出地介紹自然語言處理的理論、方法和技術。拋棄繁瑣的證明,提取出演算法的核心,幫助讀者儘快地掌握自然語言處理所必備的知識和技能。
全書分兩大部分:理論篇和應用篇。理論篇,包含前3章。第1章和第2章是為第3章打基礎,第1章介紹一些基礎的數學知識,第2章介紹最佳化理論知識,第3章實際介紹一些機器學習的相關知識。
應用篇,包含第4章到第8章。第4章介紹計算效能,算是更偏工程的唯一章節;第5章介紹文字處理時的一些基本術語,其中相似度計算的內容非常重要;第6章介紹一個工業搜尋引擎需要哪些技術點;第7章說明的是推薦系統的基礎知識;第8章介紹了解語言的難點,包含兩大基礎知識--自然語言處理和對話系統,當然也討論到對人工智慧一些看法。
適用:從事機器學習或自然語言處理的工作人員,尤其適合想要瞭解和掌握機器學習或自然語言處理技術的讀者閱讀。
作者簡介:
路彥雄 從事自然語言處理和機器學習相關工作多年,具有豐富經驗。
曾任微信小微機器人技術負責人,現任微信整合搜索演算法組組長。