本書全面介紹了圖神經網路的各個方面,包括基礎理論、前沿問題,以及模型算法和實際應用。
全書共分為四部分,27章。首部分為引言,探討了機器學習的效率與資料在特徵空間中的表示方法的關係,並著重於圖表示學習的目標與方法。
第二部分討論了圖神經網路的基礎問題,包括表現能力、可擴展性、可解釋性和對抗堅固性等問題,並強調了圖神經網路所面對的獨特挑戰。
第三部分則著重於前沿問題,包括圖分類、連接預測、圖生成、圖轉換、圖匹配、圖結構學習、動態圖神經網路、異質圖神經網路、自動機器學習和自監督學習等領域的現狀和未來趨勢。
最後一部分則廣泛討論了圖神經網路在現代推薦系統、計算機視覺、自然語言處理、程序分析、藥物開發等領域的應用。
作者簡介:
吳凌飛 博士
畢業於美國公立常春藤盟校之一的威廉與瑪麗學院電腦系。目前他是Pinterest公司主管知識圖譜和內容理解的研發工程經理。曾任京東矽谷研究中心的首席科學家和IBM Thomas J. Watson Research Center的高級研究員。主要研究方向是機器學習、表徵學習和自然語言處理的有機結合,在圖神經網路及其應用方面有深入研究。他在機器學習、深度學習等領域的著名會議或期刊上發表100多篇論文。
崔鵬 博士
清華大學電腦系終身副教授。於2010年在清華大學獲得博士學位。研究興趣包括資料探勘、機器學習和多媒體分析,擅長網路表示學習、因果推理和穩定學習、社會動力學建模和用戶行為建模等。他在機器學習和資料探勘領域的著名會議或期刊上發表100多篇論文。
裴健 博士
杜克大學電子與電腦工程系教授。他是資料科學、大資料、資料探勘和資料庫系統等領域的研究人員。他擅長為新型資料密集型應用開發有效的資料分析技術,並將其研究成果轉化為產品和商業實踐。自2000年以來,他已經出版一本教科書、兩本專著,並在眾多具有影響力的會議或期刊上發表300多篇論文。
趙亮 博士
埃默里大學計算科學系助理教授。曾在喬治梅森大學資訊科學與技術系和電腦科學系擔任助理教授。於2016年在維吉尼亞理工大學電腦科學系獲得博士學位。研究興趣包括資料探勘、人工智慧和機器學習,在時空和網路資料探勘、圖深度學習、非凸優化、事件預測和可解釋機器學習等方面有深入研究。