內容簡介
暢銷書《一個數學家的嘆息》作者的最新力作!
還原數學的本質,就是一種好奇、探索、發現的過程。
近幾年來,保羅・拉克哈特的《一個數學家的嘆息》在數學圈子裡祕密流傳,直到成書出版後,更引爆了廣泛的好評,因為它批判了今日僵化的數學教育(背公 式、大量的習題),忽略了帶領學生思考問題的過程;而且數學課程太片段化、瑣碎、缺乏脈絡。我們本來可以給孩子更好的數學體驗,讓他們喜歡上數學,產生好 奇心,不是嗎?
在這本新書中,作者寫出了數學教育正向積極的一面,帶領我們體會,數學是一種充滿趣味的探索以及思考方式。
作者現身說法提出了他心目中的數學,應該是什麼樣子。他先談數學世界與現實世界有何不同,然後從三角形、圓、幾何、代數、三角函數、向量、到微積分,不斷地引導我們問「為什麼?」。
他和你說話,用平易近人的語氣,運用手繪的圖形,就像是自己在玩數學似的,呈現他心目中理想、有意義的數學問題,以及思考過程。他不會假裝數學很簡 單,但也大方展現數學的美。在他筆下,複雜的數學概念變得符合直覺、容易掌握,數學概念不再是東一塊、西一塊,各個單元彼此可以連結,形成有意義的動人故 事。他針對數學推理和古典幾何主題的討論很有意思,正呼應了他所堅信的:數學不僅是科學,也是藝術。
在這個新天地裡,漂亮的圖形和模式在我們的腦海中閃過,做出一些令人驚訝的事!當我們注意對稱性、圓形、圓柱、圓錐,會發現幾乎每個人都有辦法「做數學」,當我們一頭栽進去,盡情思考之後,將獲得極大的喜悅,並得到情感和美感上的回報。
名人推薦
任維勇 北一女中數學教師
洪萬生 師大數學系退休教授
游森棚 師大數學系教授
無論你受過什麼樣的數學教育,或是沒有上過數學課,你都會從這本迷人的書中得到樂趣。只要你接受作者的邀請,浸淫在書裡散發出的數學感受中,並親自動 手嘗試看看──不只是解題,更積極的,一面探索數學世界一面構思問題。──貝利‧馬祖爾(Barry Mazur ),哈佛大學校聘數學教授
這本書是一首情歌,一篇哲學宣言,以及關於做數學的甘苦,但甘甜占了大多數。──史蒂芬•史特格茲(Steven Strogatz),康乃爾大學講座教授
充滿趣味和巧思的寫法,不僅讓數學不再令人感到害怕,也優雅地描繪出作者樂在其中的世界。──《出版人週刊》(Publishers Weekly)
目錄
推薦序 從「測量」看數學與數學之美 游森棚
推薦序 去掉條條框框,看見數學的本質 洪萬生
真實與想像
漫談數學問題
上篇 大小與形狀
我們一開始先談抽象幾何圖形;
對稱鋪磚和角度;
縮放和比例;
長度、面積與體積;
窮盡法及其結果;
多邊形和三角學;
圓錐曲線與射影幾何;
力學曲線。
下篇 時間與空間
這一篇涵蓋了數學上的運動;
以數值關係描述運動;
向量表示法和力學相對性;
速度;
微分法及其各式各樣的應用;
最後是給讀者的一點鼓勵。
英中譯名對照
自序/導讀
〔推薦序〕
從「測量」看數學與數學之美
游森棚/任教於國立台灣師範大學與空軍官校
測量是人類的本能:到那棵樹有多遠?有幾頭獅子?我有多高多胖?測量也是人類的挑戰:那個池塘面積有多大?海岸線有多長?下一次的日蝕是什麼時候?
讀者手上的這本書《這才是數學》,原文的書名就是「測量」(Measurement)。這本書用「測量」為經,帶領讀者穿越時光隧道,縱覽了從古希臘時代開始,一路到微積分的數學。
這本書的作者Paul Lockhart曾是幾何學家,寫過幾篇相當好的學術論文,並且曾在名校布朗大學任教。2000年起他離開學術界,到紐約布魯克林的Saint Ann's中學教書。他感嘆美國中小學的數學教學現場光怪陸離,根本摧毀了學生對數學的熱情與想像力,於是寫下了一份手稿「一位數學家的嘆息」(A Mathematician’s Lament),這份有名的手稿先在數學圈中流傳,而後於2009年出版。這本《Measurement》是他最新的,也是談數學與數學教育的科普書籍。
這是一本相當特別的數學科普書。不少數學科普書籍因為讀者程度的設定,常常花大量的時間在打轉:或者編造數學問題的情境;或者鋪陳數學家的生平,怪 癖,或軼事。但是這些故事通常和「數學」本身沒有關係。這本書不然。作者非常明白地告訴讀者,他只談數學:數學的發現,數學的內容,數學為何美麗。
作者開宗明義說,數學世界只存在於心智中,點就是一個點,線就是一條完美的線,圓就是一個完美的圓,不像現實世界充滿了近似值。在這個世界中,你可以 盡情玩耍,觀察後發現一些現象,然後做出猜測,然後證明,這一路的過程正是數學迷人的原因。更神奇的是,一旦論證是對的,所有的發現就是斬釘截鐵,就變成 絕對正確的真理:三角形的三條中線就是會交於一點,直角三角形的兩短邊的平方和就剛好等於斜邊的平方和。作者雖未言說,但這正是柏拉圖的思想:在理型世界 中,各種關係是永恆不變的,是絕對的真理。
作者帶領我們從簡單的形狀開始測量,線段的長度,三角形的角度和,多邊形與多面體。為了測量正方形的對角線就出現了無理數。為了測量圓周長出現了超越 數。接著是面積,體積,開始有代數,三角,圓錐曲線和射影幾何。把曲線看成是質點的運動軌跡,就出現了函數,速度,微分,積分。最終停在指數與對數。
數學的發展一日千里,當代數學百家爭鳴,不僅有抽象數學的理論高度,更有應用數學的興起,與跨領域的整合。本書的題材從規則形狀的測量一路談到微積 分,取材相當豐富,卻也是相當古典的,事實上,這離當代的數學的研究對象已經非常遙遠了。但是正因為這些是古典題材,更足以讓我們依循著古人的發現腳步, 一窺數學的堂奧。但本書不掉書袋,娓娓道來,雖沒有太多人名和歷史故事,實際上卻橫跨了數學史數千年的發展,份量已經足以開一門數學史的課程了。
我極佩服作者能夠信手拈來,用非常直觀的方法把許多概念講得清清楚楚,用簡單的例子說明重要概念是怎麼成形的,以及一些根本的結果為什麼會是對的。比 如說:怎麼對小學生解釋為什麼三角形的面積剛好是底乘以高的一半;怎麼對國中生解釋圓的面積是圓周率乘以半徑的平方;為什麼圓,橢圓
內容試閱
何謂數學問題?對數學家而言,問題就是一種試探──去檢驗數學實在,看看它做出什麼行為。就好像「拿棍子戳一下」,看會發生什麼事。我們看到了數學實在的一小角,可能是幾何形狀的排列方式,或是數字模式之類的,想要進一步了解它背後的運作,於是我們戳它一下──只不過沒用手或是棍子,而是運用心智。
舉例來說,假設你在畫三角形,在這些三角形上進行各種實驗,譬如切割成小三角形,結果偶然發現了一件事:
你把各邊中點和它的對角連起來時,三條連線(中線)似乎全交於一點。又試了各式各樣的三角形,發現好像都會如此。這下子你遇到了一個謎團!但是我們先來釐清這個謎團的本質。它跟你畫在紙上的圖無關。用紙筆畫出的三角形能做或不能做些什麼,是和實體世界有關的科學問題。譬如你畫得很草率,三條中線就不會相交成一個點。我想你大可以畫得非常小心謹慎,再放在顯微鏡下看,但頂多只會把紙纖維和鉛筆的石墨成分看得更清楚,卻不會因此而更了解三角形。
真正的謎團,是環繞著這些過於完美、不存在於現實的三角形,而我們想問的問題是:在數學實在中,這三條完美的直線是否會交於一個完美的點。鉛筆或顯微鏡現在都派不上用場。(在整本書我會一直強調這種區別,可能會到讓你嫌囉唆的地步。)我們該如何解決這樣的問題?對於這樣的假想物件,有任何已知的知識嗎?是哪種形式的知識?
在繼續檢視這些提問之前,我們先花點時間,欣賞一下這道問題,領略何謂「數學實在」的本質。
我們撞見了一個密謀,顯然暗中有某種(未知的)結構上的運作,使這種情況發生。我認為這很了不起,但也有點嚇人。三角形究竟知道什麼事,是我們所不知道的?想到有這麼多漂亮而深奧的真理,等著我們去發現並融會貫通,有時還真讓我有點忐忑不安。
這個謎團究竟是什麼?我們想知道為什麼。為什麼一個三角形想這麼做?假如你是隨便把三根棍子丟到地上,棍子通常不會交疊在某一點,而是兩兩交叉,中間形成一個小三角形,不是嗎?
我們所尋找的是一種解釋。當然,倘若這現象根本不真確,我們可能就找不到解釋了。譬如我們只是一廂情願,或是被拙劣的繪圖手法給愚弄了。在實體世界裡有很多「敷衍之事」,所以也許只是三條直線相交成的那個三角形太小了,被鉛筆屑擋住,我們看不到罷了。但另一方面,它當然也有可能為真;它具備了數學家會去尋找的很多元素:自然性、優雅、簡單,以及某種令人信服的特質。所以它可能是對的,但問題同樣是:為什麼?
現在,學問來了。為了做出解釋,我們得創造某樣東西──要以某種方式建構一套論證或推理,可讓我們回答為什麼三角形會產生這種行為。這項任務非常艱鉅。其中一個理由是,若只是畫或做出一堆實體三角形,然後看它對不對,這樣是不夠的。這並不是在解釋,反而比較像是「近似驗證」。我們的疑問,是個更為嚴肅的哲學問題。
如果不知道為什麼三中線交於一點,又怎麼知道它們真的相交呢?「數學實在」不像實體世界,沒有實物可觀察。我們該如何了解一個純想像的領域?重點是,什麼是真確的,其實沒那麼重要。真正重要的是為什麼它為真。理由才是我們該問的。
我並不是要貶低人類感官的價值。我們十分需要繪圖、模型、影片等任何可取得的素材,來輔助直覺和想像。我們只需明白,這些東西並不是討論的主體,並不能告訴我們數學實在的真相。
所以,現在我們真的面臨困境了。我們認為自己可能發現了一個漂亮的真理,現在需要證明它。這就是數學家...