數學實用定理 | 拾書所

數學實用定理

$ 315 元 原價 350

內容簡介

土地丈量、距離與速度計算等都會用上,

日常生活不可或缺的「數學定理」。

 

數學正流行!世界各國都已意識到學習數學的重要性。了解「應用於日常生活的定理」並不困難,而且具備了這樣的數學知識,將有助於改變你的思維方式,讓生活開啟嶄新的視野。

 

從著名定理到困難定理,插圖解說、簡單易懂,打通你的數學思路:

◎不是球的球?

◎4色定理可以管理手機基地台?

◎正弦定理可以計算到月球的距離!

◎蜂巢為什麼是正六邊形?

◎從晴空塔的展望台可以看到多遠?

◎費氏數列與「黃金比例」的祕密

 

本書特色

 

1、 中學生趣味圖解閱讀系列新作!大人也愛的科普系列書!孩子不愛讀書嗎?那麼就從趣味學習系列著手吧!有別於教科書的刻板學習及流水帳式的敘述方式,讓孩子從有趣的圖片插畫建立起新的思維模式!同系列收錄《趣味化學》《趣味生物》《生活物理》《趣味相對論》《飛機為什麼會飛》《趣味地球科學》《趣味宇宙》《趣味植物》,透過重點式的Q&A,結合有趣的圖表插畫,網羅科普知識的小百科,讓您愛不釋手輕鬆閱讀!

 

2、 從著名定理到困難定理,簡單易懂地介紹有用的數學定理。現在,數學正引起人們的注意!世界各國已經意識到學習數學的重要性。許多人認為數學是困難的,但是,本書要告訴你,了解「應用於日常生活的定理」並不困難,且令人驚訝的是,這些美麗配方的背後隱藏著不可思議的配方,若您具備了這樣的數學知識,將會覺得生活充滿了樂趣並開啟您的新視野!

 

3、 容易理解及閱讀,穿插知名數學家的小故事,增添閱讀趣味性!

 

作者簡介

譯者介紹

目錄

前言 

序章  認識基礎的定理和猜想
數學的定理究竟有何意義?
畢達哥拉斯定理和費馬最後定理是什麼?
初步認識定理之王—畢達哥拉斯定理
活用在日常生活的數學定理
數學小故事(1)
專欄(1)  歐幾里得

第1章  耳熟能詳的數學定理
畢達哥拉斯定理與三角函數
正弦定理的意義及活用方法
餘弦定理的意義及活用方法
泰利斯定理的意義及活用方法
數學小故事(2)
專欄(2)  卡爾.弗里德里希.高斯

第2章  融入日常生活的數學定理
認識4色定理的實用性
探討4色定理的發展
足球非球,而是多面體?
六邊形的蜂巢是有其道理的
從晴空塔上可以看到多遠?
正多面體的性質與歐拉的多面體定理
數學小故事(3)
專欄(3)  柏拉圖

第3章  學校學過的數學定理
畢達哥拉斯定理
西瓦定理
孟氏定理
托勒密定理
月牙定理
弦切角定理
三角形重心定理的應用
切割線定理
中點定理
西姆松定理
數學小故事(4)
專欄(4)  萊昂哈德.歐拉

第4章  知道後會很有益的數學定理
認識基礎的二項式定理
費氏數列擁有不可思議的力量
費氏數列會逐漸趨近於黃金比例
認識基礎的餘式定理和因式定理
擁有奇妙涵義的質數的基本定理
認識基礎的三角形五心定理
認識基礎的微積分學
什麼是阿基米德的「窮盡法」?
認識基礎的皮克定理
認識基礎的阿貝爾定理
數學小故事(5)
專欄(5)  費波那契

第5章  活用數學定理解決問題
用畢達哥拉斯定理解決問題1
用畢達哥拉斯定理解決問題2
用多面體定理解決問題
用圓周角定理解決問題
用獨立試驗的定理解決問題1
用獨立試驗的定理解決問題2
數學小故事(6)
專欄(6)  阿基米德

第6章  日常生活與數學
被偷走的鳥兒有幾隻?
什麼是卡瓦列里原理?
來挑戰很容易算錯的平均時速吧
研究代數的丟番圖
簡單來說,究竟什麼是微積分?
稍微進階的數學問題
將17隻驢子依父親遺言分給3個人
「莫比烏斯環」究竟是什麼環?
在限制的條件下找出偽幣
你能看穿這個陷阱嗎?...

內容試閱

序章 認識基礎的定理和猜想

數學的定理究竟有何意義?
從公理或定義推導出來,並證明為真的陳述,就是「定理」。而定理的特徵,在於可做為證明數學表達式的依據,或做為思考數學問題的基礎根底。因此,容易使用、容易應用,便是定理很重要的條件。
另一方面,「證明定理」這件事本身,有時就是數學家追求的最終結果。
換言之,以數學性的思考來說,定理就是終極目標。因此,定理往往必須是優美的。
當我們在認識定理時,也會看到「○○猜想」這樣的詞彙。這指的是數學領域中存在的幾個「○○猜想」。○○是人名,表示這是由○○提出的猜想,但尚未獲得證明。一旦猜想被證明後,才能稱為定理。
比較知名的猜想,有「哥德巴赫猜想」及「費馬猜想」。代表這是分別由哥德巴赫及費馬所提出的猜想,但尚未被證明(費馬猜想已在1995年獲得證明)。
命題本身絕對稱不上困難,但要證明卻極具挑戰,因此全世界的數學家們才會耗費數十年的時間,苦苦思索證明的方法。近來,哥德巴赫猜想終於在電腦的計算下,確認猜想幾乎是正確的,但仍然尚未被證明。

活用在日常生活的數學定理
大眾通常只覺得數學定理很難,卻不太清楚這些困難的定理,是如何被應用在我們的日常生活。其實我們在生活中享受到的、許多看似理所當然的事物,很可能都是定理的功勞喔。
舉例來說,大家比較熟悉的「畢達哥拉斯定理」,就經常用在距離的計算上。進階一點,也能用來計算發射衛星到太空的速度。這時,就要計算衛星要以多快的速度移動,才能在平行於地球表面的軌道上穩定運行,既不會遠離也不會墜落。利用畢達哥拉斯定理,就能算出衛星1秒需要飛行幾km。
測量土地時,可以使用正弦定理;若是2地點之間存在障礙物,則可以使用餘弦定理來測量。當我們想知道A、B這2個地點之間的距離時,中間可能有建築物或山川等障礙物,因此無法直接測量。此時就可以選擇一個無障礙物的地點C,畫出三角形,就能利用餘弦定理求出想測量的距離。
手機是現代生活中不可或缺的工具,而手機的通訊系統中,為了不讓頻率相同的電波相互干擾,相鄰地區必須以不同的顏色劃分區隔,以避免設置電波頻率相同的基地台。這樣的區塊配置,便是應用了4色定理。

數學小故事(1)
持續翻倍的結果,最終成為驚人的數字
豐臣秀吉想獎勵有功的家臣曾呂利新左衛門,便向本人詢問:「給你選擇自己的獎賞,想要什麼就說說吧?」
新左衛門沉思一番,回答:「這個大房間裡鋪了100張榻榻米,請您在第一張榻榻米上給我1粒米,下一張給我2粒米,再下一張給我4粒米,如此成倍增加,直到這個房間內的所有榻榻米上都有米粒為止。」
「要把1俵的米放在1張榻榻米上確實是滿難的,不過你只要這些就夠了嗎?」
秀吉笑著問。他的想法是:「100張榻榻米,從1粒米開始算,總數充其量也不過是米俵的10~30俵左右吧。」
然而,他命一位家臣試算後,發現第5張、第6張……到第8張左右時,雖然總計只有一把米(256粒)的量,但超過30張榻榻米後,數量便會急遽增加,換算成米俵就是將近2千俵了。對秀吉來說,這倒還不是多大的數目,但到了一百張榻榻米時,又會變成多麼可怕的數字?實際計算,來到一百張榻榻米時,米的總量會多達525,000,000,000,000,000,000,000,000,000俵,不用說全日本,就算把從古至今全人類種植的米全部收集起來,也達不到這個數字。
無法給出這...

Brand Slider