內容簡介
關於函數的極限,正經八百的教科書會告訴你:
若對所有 ε > 0,存在一個 δ > 0 ,使得| f (z) – c| < ε,
其中0 < |z – a| < δ,則函數 f (z) 有一極限:
limz → a f (z) = c
寫《微積分之屠龍寶刀》的三位教授則會舉實例告訴你:
假設你的鼻尖位置在x,而電風扇的位置在3。
那麼,當你的鼻子朝3 移近,而且愈來愈靠近時(但絕對不要真正到達3),會發生什麼事?
當然,你會覺得風愈來愈強。現在,我們要取limx → 3 b(x),
其中的b(x) 就是當你的鼻子在點x 時,所感受到的風的強度。
這本微積分寶典,不會讓你正襟危坐;這本寶典著重於觀念的闡釋與釐清。
看不懂一般教科書、聽不懂教授的講解嗎?
請拿起《微積分之屠龍寶刀》,作者會用風扇、山羊、貓頭鷹、雞湯等生動的例子,把獨門妙招傳授給你,引導你過關斬將,樂在微積分。
若對所有 ε > 0,存在一個 δ > 0 ,使得| f (z) – c| < ε,
其中0 < |z – a| < δ,則函數 f (z) 有一極限:
limz → a f (z) = c
寫《微積分之屠龍寶刀》的三位教授則會舉實例告訴你:
假設你的鼻尖位置在x,而電風扇的位置在3。
那麼,當你的鼻子朝3 移近,而且愈來愈靠近時(但絕對不要真正到達3),會發生什麼事?
當然,你會覺得風愈來愈強。現在,我們要取limx → 3 b(x),
其中的b(x) 就是當你的鼻子在點x 時,所感受到的風的強度。
這本微積分寶典,不會讓你正襟危坐;這本寶典著重於觀念的闡釋與釐清。
看不懂一般教科書、聽不懂教授的講解嗎?
請拿起《微積分之屠龍寶刀》,作者會用風扇、山羊、貓頭鷹、雞湯等生動的例子,把獨門妙招傳授給你,引導你過關斬將,樂在微積分。
作者簡介
譯者介紹師明睿
台灣大學化學系畢業,美國印地安納州立普度大學生物化學博士。譯有《費曼的6堂Easy物理課》、《觀念物理3:物質三態.熱學》等。
台灣大學化學系畢業,美國印地安納州立普度大學生物化學博士。譯有《費曼的6堂Easy物理課》、《觀念物理3:物質三態.熱學》等。
目錄
第1章 導言
第2章 你的任課老師到底是哪號人物?
2.1 選擇你的任課老師
2.2 對任課老師該有啥要求
2.3 如何與任課老師相處
第3章 輕鬆拿高分的十大通則
第4章 問題的好壞
4.1 幹嘛要問問題?
4.2 問題舉例
4.3 不該問的問題
第5章 準備好了嗎?來點先修課程
5.1 你學到了什麼
5.2 在上微積分的第一天,你應該知道什麼
5.3 電腦與計算機:咱們的二位元朋友
第6章 如何應付考試
6.1 會考些什麼
6.2 如何K書
6.3 如何不為考試而K書
6.4 應考須知
第7章 直線、圓、圓錐曲線幫
7.1 笛卡兒平面
7.2 一般繪圖妙方
7.3 直線
7.4 圓
7.5 橢圓、拋物線、雙曲線
第8章 極限:你可少不了它們
8.1 基本觀念
8.2 取極限的一般程序
8.3 單邊極限
8.4 怪異函數的極限
8.5 計算機與極限
第9章 連續性,或你為何不該在不連續的坡道上滑雪
9.1 觀念
9.2 連續性的三個條件
第10章 何謂導數?窮則變,變則通
第11章 導數的極限定義:求導數的麻煩方法
11.1 定義導數
11.2 其他形式的導數極限定義
第12章 求導數的簡單方法
12.1 微分法之基本法則
12.2 冪法則
12.3 積法則
12.4 商法則
12.5 三角函數的導數
12.6 二階導數、三階導數、更高階的導數
第13章 速度:油門踩到底
13.1 速度即導數
13.2 車子的位置與速度
13.3 自由落體的速度
第14章 鏈鎖律:S&M的遊戲?
第15章 畫函數圖形:如何當個專家
15.1 畫函數圖形
15.2 能夠絆倒你的困難圖形
15.3 二階導數檢測
15.4 凹性
第16章 極大值與極小值:實用部分
16.1 閉區間上的最大值及最小值
16.2 應用問題
第17章 隱微分法:咱們就拐彎抹角吧
第18章 相關變率:你變、我跟著變
第19章 求近似值:評估你的揚名立萬之路
第20章 中間值定理與均值定理
20.1 中間值定理:麵包中間沒夾東西就不叫三明治
20.2 均值定理:陡就是陡
第21章 積分:倒過來做就成了
21.1 不定積分
21.2 積分法:簡單的方法
21.3 代換法
21.4 眼珠技術
21.5 現成的積分表
21.6 利用電腦及計算機
第22章 定積分
22.1 如何求定積分
22.2 面積
22.3 微積分基本...
第2章 你的任課老師到底是哪號人物?
2.1 選擇你的任課老師
2.2 對任課老師該有啥要求
2.3 如何與任課老師相處
第3章 輕鬆拿高分的十大通則
第4章 問題的好壞
4.1 幹嘛要問問題?
4.2 問題舉例
4.3 不該問的問題
第5章 準備好了嗎?來點先修課程
5.1 你學到了什麼
5.2 在上微積分的第一天,你應該知道什麼
5.3 電腦與計算機:咱們的二位元朋友
第6章 如何應付考試
6.1 會考些什麼
6.2 如何K書
6.3 如何不為考試而K書
6.4 應考須知
第7章 直線、圓、圓錐曲線幫
7.1 笛卡兒平面
7.2 一般繪圖妙方
7.3 直線
7.4 圓
7.5 橢圓、拋物線、雙曲線
第8章 極限:你可少不了它們
8.1 基本觀念
8.2 取極限的一般程序
8.3 單邊極限
8.4 怪異函數的極限
8.5 計算機與極限
第9章 連續性,或你為何不該在不連續的坡道上滑雪
9.1 觀念
9.2 連續性的三個條件
第10章 何謂導數?窮則變,變則通
第11章 導數的極限定義:求導數的麻煩方法
11.1 定義導數
11.2 其他形式的導數極限定義
第12章 求導數的簡單方法
12.1 微分法之基本法則
12.2 冪法則
12.3 積法則
12.4 商法則
12.5 三角函數的導數
12.6 二階導數、三階導數、更高階的導數
第13章 速度:油門踩到底
13.1 速度即導數
13.2 車子的位置與速度
13.3 自由落體的速度
第14章 鏈鎖律:S&M的遊戲?
第15章 畫函數圖形:如何當個專家
15.1 畫函數圖形
15.2 能夠絆倒你的困難圖形
15.3 二階導數檢測
15.4 凹性
第16章 極大值與極小值:實用部分
16.1 閉區間上的最大值及最小值
16.2 應用問題
第17章 隱微分法:咱們就拐彎抹角吧
第18章 相關變率:你變、我跟著變
第19章 求近似值:評估你的揚名立萬之路
第20章 中間值定理與均值定理
20.1 中間值定理:麵包中間沒夾東西就不叫三明治
20.2 均值定理:陡就是陡
第21章 積分:倒過來做就成了
21.1 不定積分
21.2 積分法:簡單的方法
21.3 代換法
21.4 眼珠技術
21.5 現成的積分表
21.6 利用電腦及計算機
第22章 定積分
22.1 如何求定積分
22.2 面積
22.3 微積分基本...