內容簡介
解釋超導體、量子力學
2016年諾貝爾物理學獎,就是以拓樸概念解開物質的奧秘!
馬克杯和甜甜圈竟然是相同的形狀?
如何一筆畫完成柯尼斯堡七橋?
映射、流形與扭結
從曲面幾何猜想宇宙形狀
解開百年大謎——龐加萊猜想!
這些都可以用拓樸學一一解密!
2016年的諾貝爾物理獎由3位英國學者共同獲得,其中1∕2的獎金頒給目前任教於美國華盛頓大學的David J. Thouless,其餘1∕2則由美國普林斯頓大學的F. Duncan M. Haldane及美國布朗大學的J. Michael Kosterlitz分享。
這3位學者獲獎的主要貢獻是「物質的拓樸相變及拓樸相態的理論發現」,物質在極低溫的環境中常會產生一些奇異的現象,這物質會轉變成完全不同的狀態(或稱相態),即人們熟知的超導體。
這個發現不僅開啟了人們對不同於傳統四態(即固態、液態、氣態、電漿態)及傳統相變的全新領域的探索,也對當前材料、電子科學及量子電腦的發展有重要的影響。
拓樸學(topology),是在數學上一門鑽研不會受到形狀或大小的連續變化而改變的幾何性質。
例如就幾何形狀來看,碗、馬克杯、甜甜圈這3樣東西,哪兩個看起來比較相似呢?
拓樸學從數學拓樸的概念來看,馬克杯跟甜甜圈其實才是相同的。
在拓樸學中有一種克萊因瓶,這是一個非常特殊的瓶子,我們生活的空間幾何維數是三維,而克萊因瓶只能在四維及更高維空間存在,理論上無法在我們三維空間中製造出來,就好像在一個二維平面上不能制造出一個球來一樣。
這是一種沒有開口也沒有出口的瓶子,沒有裡面也沒有外面,外面就是裡面,裡面就是外面,這是一種只存在四維空間的克萊因瓶之祕!
作者簡介
目錄
序
第 1 章 拓樸學是什麼?
「相同形狀」是什麼情況?
1-1 「相同形狀」是什麼?
1-2 位相的「相」是什麼?
1-3 「同胚」是什麼圖形?
1-4 位相的「位」是什麼?
1-5 百年無人能解的龐加萊猜想終得證明!
Column 1 簡圖、路線圖是我們身邊常見的拓樸學
第 2 章 簡圖是什麼?
是否能「一筆畫」完成?
2-1 「柯尼斯堡七橋」問題
2-2 「歐拉圖形」是什麼?
2-3 歐拉圖形的條件
2-4 「漢密頓圖形」是什麼?
2-5 拓樸學的語源與發展
Column 2 「博羅梅安環」能否一筆畫完不重覆?
第 3 章 認識拓樸不變量
圖形區別的工具
3-1 「歐幾里得空間」是什麼?
3-2 「圖形」是什麼?
3-3 「拓樸不變量」是什麼?
3-4 「成分數」與「維度」是拓樸不變量
3-5 計算歐拉示性數的「三角形分割」是什麼?
3-6 「單元分割」求歐拉示性數
3-7 「正多面體」的歐拉示性數
3-8 「T1、T2」的歐拉示性數
Column 3 「三菱形」能否一筆畫完不重覆?
第 4 章 映射是什麼?
理解拓樸學,不可不知「連續映射」
4-1 「映射」是集合到集合的對應
4-2 「連續映射」是什麼?
4-3 「同胚映射」是什麼?
4-4 舉例說明「同胚映射」
4-5 合痕形變與同倫形變
4-6 稱為「德恩扭轉」的同胚映射
Column 4 「定點定理」是什麼?
...