內容簡介
人類生殖和胚胎研究的前瞻檢驗,她的研究對胚胎學和發育生物學影響深遠
人類在成人時期大約擁有幾十兆個細胞,每個細胞的直徑約為0.01公釐。如果每個細胞都像人這麼大,那麼一個成人的身體從頭到腳量起來就會有幾百公里那麼高。從受精卵這個可以說是最重要的單一細胞的角度來看,促成這個龐大且錯綜複雜細胞群的編舞實為驚人。所有這些不具思考能力的細胞是如何協調行動以創造出具有知覺的人類呢?
長期以來,科學家們一直在努力讓懷孕更容易、更安全、更成功。在《生命之舞》中,發育和幹細胞生物學家瑪格達萊娜.澤尼克-格茨將我們帶到了理解人類生命創造的前線。她花了 20 年時間解開發育的奧秘,從一顆簡單的受精卵變成一個擁有 40 兆個細胞的複雜人類。
澤尼克-格茨的研究工作既實用又驚人:她對小鼠、人類和人造胚胎模型的開創性實驗為更多女性如何維持懷孕帶來了希望。《生命之舞》處理科學最強大的力量和人類最關心問題的交點,對未來生育能力和生命本身的描繪極具啟發性。
作者簡介
作者簡介 姓名:瑪格達萊娜.澤尼克-格茨Magdalena Zernicka-Goetz
是劍橋大學哺乳動物發育和幹細胞生物學教授,她在劍橋大學生理學、發育和神經科學系主持一個實驗室。她也是加州理工學院生物學與生物工程教授,她於2019年在此建立了她的實驗室。她還是 Sidney Sussex College 的研究員和 Wellcome Trust 的高級研究員。擁有多項診療相關專利,在Nature、Science、Cell等主要期刊發表論文117篇。2023年小川-山中幹細胞獎得主(2023 Ogawa-Yamanaka Stem Cell Prize)。她的住所位於英國劍橋和加州洛杉磯。
姓名:羅傑.海菲爾德Roger Highfield
科學博物館集團的作家、記者、廣播員和科學部主任。他也是牛津大學和倫敦大學學院的公眾參與客座教授。在科學博物館集團工作之前,他是《新科學家》雜誌的編輯和《每日電訊報》的科學編輯。他撰寫或與人合著了 8 部科普書籍,並編輯了 J. Craig Venter 的自傳《A Life Decoded》(Allen Lane/Viking,2007 年),該書入圍英國皇家學會科學圖書獎。他住在英國倫敦。
譯者簡介 姓名:蕭秀姍
國立成功大學物理治療系學士、醫學工程研究所碩士,比利時魯汶大學醫療影像處理碩士、家庭與兩性關係碩士。旅居歐美超過十年,目前回台定居。身兼全職媽媽與半職譯者,以照顧家庭為主業、翻譯書籍為調劑,在文字與生活之中尋找平衡。擅長科普、心理、醫藥理工與食材料理等翻譯。譯作有:《擁有自我的心智》、《事物的奇怪順序》、《都是...
目錄
好評推薦
〈審定序〉發育生物學家的日常生活研究 曹順成
〈導讀〉交織人生悲喜和胚胎可塑性研究的科學傳記 丁照棣
〈推薦專文〉由單細胞受精卵開始的奧妙生命之舞 蘇怡璇
〈推薦專文〉一顆胚胎發育成人之旅 黃貞祥
〈推薦專文〉一支於你我生命中盡情跳躍的豐盈之舞 冬陽
前言:源起
我的科學/創造的邊緣
第1章 白袍
我的檢測
第2章 機會與命運
機會與命運/可塑性/牛津大學的複製研究/人類不一樣嗎?/細胞上色
第3章 細胞上色
極體/困難的選擇/著床後的首次嘗試/胚胎藝術
第4章 打破對稱性
受精/巨大的卵子與微小的精子/哪個時間點算是個體真正誕生的時刻/對稱藝術/生命的數學/廚房的胚胎學/首次對早期胚胎進行上色/鰻魚、青蛙與人類/男性導師/改變的源頭
第5章 身體計畫的誕生
英雄小鼠/金字塔嵌合體/眼見為憑/這個機制是什麼?/單一細胞的故事/如何產生雙胞胎?/複製
第6章 打開黑盒子
尋找胚胎/著床當下的胚胎/自我建構的人類胚胎/細胞、潛能與結構/人類胚胎在體外發育的時間可以有多長?
第7章 人類胚胎應該供研究使用嗎?
體外發育的人類胚胎/對體外受精(試管嬰兒)進行規範/我們應該要重提14天限制的這項議題嗎?/絕非滑坡效應
第8章 賽門
三染色體症/鑲嵌型與嵌合體/發表論文從來就不簡單/從事科學研究/賽門
第9章 尋找合成胚胎
類胚胎體/如何建構胚胎?/我們熱衷的研究計畫/胚胎的數目/在澳洲的冒險/第一個ETS胚胎/胚外內胚層幹細胞(XEN)的藝術/截至目前為止/幹細胞胚胎模型的倫理
第10章 創造生物學的新時代
創造生物學/再生醫學/首批胚胎幹細胞/受到控管的分化/內行人的觀點/在培養皿中模擬疾病進程/修復受損細胞/生殖學的未來:著床前測試/「設計嬰兒」/胚胎編輯/粒線體置換療法/使用CRISPR技術進行基因組編輯/另一半的創新/改善試管嬰兒技術/染色體異常/更好的產前檢查/平衡生殖科學
第11章 生命之舞
賽跑/平衡與多元/向前邁進
致謝
各界推薦/推薦序
〈審定序〉發育生物學家的日常生活研究
國立臺灣大學通識教育組兼任副教授 曹順成
生命現象和生物多樣性一直以來都是生物學中最奧妙的兩個問題。生物都是從一個受精卵開始分化,經過一系列非常細微、複雜的變化,最後發育成為有代謝、會生長、能運動、可感應和具有生殖能力的一個完整的新個體。再經過三十多億年的演化之後,形成現在我們所看到的地球上各式各樣的生物。地球上為什麼有這麼多種的生物?同一個生物體為什麼有不同的器官?這些器官是何時、如何產生的?各種器官形成的時間有早有晚,通過器官發生階段,各種器官經過形態發生和組織分化,逐漸獲得了特定的形態並執行一定的生理功能。科學家對生命的好奇已經有非常長久的歷史,早期對多細胞生物的發育歷程大多是研究各種容易觀察的蛋(胚胎),所以長久以來的教科書和課程都稱為「胚胎學」,胚胎發育的觀察與研究讓我們了解生物從受精卵到多細胞成體的過程。傳統的胚胎學研究始於17世紀,著重在描述、探討如何正確形成個體和完整型態的各個步驟,當時認為胚胎的各部分是一開始就存在的。
現代發育生物學的濫觴可以從和遺傳學的結合談起,1970年代中期二位年輕的科學家將遺傳分析和胚胎發育研究結合,他們篩選造成果蠅發胎發育問題的突變,並且有系統地分析基因之間的關聯性,這一系列的研究結果不但讓我們了解果蠅的早期胚胎發育的分子機制,也結合分子生物學的方法讓科學家有機會了解早期胚胎發育的分子機制。更令大家吃驚的是,分子機制在演化上的保守性,許多果蠅中發現的胚胎發育相關的基因,在你我的細胞裡也有同源基因,這些同源基因在我們的胚胎發育過程中也扮演著相似的角色,例如:Hox 基因決定身體沿著體軸各部位的構造。不意外的是,果蠅胚胎發育的遺傳分析讓二位科學家—克里斯汀.紐斯林-沃爾哈德(Christiane Nüsslein-Volhard)和艾瑞克.威斯喬斯(Eric F. Wieschaus)獲得1995年諾貝爾生理醫學獎,同一年獲獎的科學家還有艾德華.路易斯(Edward B. Lewis),他研究雙胸果蠅的遺傳機制,奠定了我們對節肢動物體節特化的認識。這些20世紀後期的遺傳學家與分子生物學家開啟了發育生物學全新的面貌,也將傳統胚胎學課程轉型為發育生物學。
近年來隨著胚胎幹細胞的研究和再生醫學時代的來臨,讓發育生物學這一門研究生物體生長和發育過程、著重於分子和細胞生物學的科學越來越受到重視。細胞自我更新(Self-renewal)也是發育生物學中非常重要的研究領域,因為幹細胞是未充分分化的細胞,且有潛力能分化成幾乎所有細胞類型的未特化細胞。由於這種特殊性質以及近代幹細胞研究相關技術的成熟,讓許多來自不同領域的科學家們紛紛加入研究的行列。無論是在幹細胞的基礎研究上、還是針對基因調控與幹細胞分化機制的研究、用來治療遺傳性疾病和癌症;或是將幹細胞培育成組織及器官應用在對抗衰老與延長壽命上,都讓我們燃起一線希望。
我的研究背景其實是分類學與演化生物學,從大學開始以昆蟲為研究主題已經超過40 個年頭,回首碩士研究期間因為楊仲圖老師發現了罕見的飛蝨若蟲,請我馬上訂機票飛澎湖進行野外工作,好像還是昨天的事。昆蟲多樣性與昆蟲發育也是我在研究過程中一直遇見的課題,現在在教學的現場,我也常和學生們分享昆蟲世界的多樣性和他們在研究上的貢獻,昆蟲的發育也是我經常採用的教材。
我雖然沒有懷孕生子的經驗,但是和內子一起陪伴三個孩子的成長,對作者...