因果革命:人工智慧的大未來(硬殼精裝) | 拾書所

因果革命:人工智慧的大未來(硬殼精裝)

$ 537 元 原價 680

內容簡介

大數據為什麼不夠聰明?
比機率更強大的思考工具又是什麼?
《快思慢想》作者暨諾貝爾獎得主康納曼、《大演算》作者多明哥斯、
谷歌網路推廣長文特‧瑟夫、微軟研究實驗室主任艾瑞克‧霍爾維茲
————重磅推薦!————


電腦科學界諾貝爾獎「圖靈獎」得主暨貝氏網路研發先驅Judea Pearl總結畢生研究成果,聯手獲獎的統計學家Dana Mackenzie,提出改變人工智慧及科學界的重要工具!

▎大數據看似厲害,其實有很大的侷限
近幾年大數據當紅,加上它在許多領域的成功運用,其地位與能力備受追捧。與大數據密切相關的統計學,是法蘭西斯・高爾頓與卡爾・皮爾森解答對於遺傳的疑問未果,而開發出來的學科,這門學科創立後興盛數十載,其名言「相關不是因果」影響科學界經常止步於探究「關聯」而非「因果」,並且長期受資料本位的歷史所影響,認為資料無所不能,但是朱迪亞・珀爾希望藉此書告訴讀者,資料本身一點也不智慧。

▎要發展出「強AI」,機率思考仍遠遠不夠
一九八○年代初,朱迪亞・珀爾認為不確定性是AI所欠缺的最重要的能力,於是運用機率開發出強大的推理工具——貝氏網路,因而獲得有電腦科學界諾貝爾獎之稱的「圖靈獎」。貝氏網路是首先讓電腦以灰階方式思考的工具,至今仍極受人工智慧界倚重,然而到了一九八○年代末,珀爾認為貝氏網路仍沒有填補人工智慧和人類智慧的差距,於是他轉而研究如何教AI學會「因果推論」,本書便是整理了歷代科學家推展因果革命的努力與成果。

▎從「求得相關性」的舊階段,邁入「釐清因果關係」的新時代
本書最初幾章是有趣的科學史,探討科學家追求因果解釋的過程如何受挫,以致發展出統計學,並讓統計學方法長期引領學界研究。接著書中有大約一半篇幅,作者以實例示範因果語言(圖示模型)如何解決傳統統計學認為無解的難題,逐一揭示「因果階梯」三大分層的能力(越高的層級,認知挑戰越高,越難理出因果關係),並讓讀者了解因果革命路上諸人的努力與進展,以及這些進展的重要性。本書末尾回頭說明因果革命相對於人工智慧各重要發展面向(比如大數據、深度學習、資料探勘、機器學習等),有何勝出之處、能對它們起什麼正面影響,以及最重要的——「因果革命」將會如何改變人工智慧。

▎「因果革命」不只影響人工智慧,還影響各研究領域
現今機器學習運作時仰賴的是「相關性」,而不是「因果」,如果能成功將因果思考導入電腦,將使電腦變成真正的科學家,使它們成為我們的得力伙伴,提供我們更合理的洞見。由於因果思考可以呈現罪責,電腦能因而具備道德感——「具備道德感的強AI」是因果革命在人工智慧領域的終極追求,作者形容這「是人工智慧給人類的第一個、也是最好的禮物」。
因果性研究還釐清了我們多年來對許多知識本質的不解,改變我們對於眾多問題的認識,這些問題牽涉的層面無所不包,舉凡涉及解讀資料以及根據解釋而採取的作法(像是致病因素、醫療資源分配、公共政策擬定等),都能受益。集結眾多領域學人之力才有如今成果的因果革命,亦將回頭影響整個科學界,珀爾形容它「將使科學的體質更加健全,是人工智慧給人類的第二個禮物」。在美國,因果科學已經開始被大學列入課程……

▎我們強烈建議這些人士閱讀這本書:
(1)資料科學家與大數據研究者,以及對大數據深感興趣的人
(2)統計學家、數學家,電腦科學相關從業人員與學習者
(3)對經濟趨勢與科研發展有興趣的一般大眾
(4)希望培養科學素養,了解最新科學方法的學子

▎各章內容簡介請參閱〈目錄〉的引文。

作者簡介

譯者介紹甘錫安

學業結束後由科學界踏入「譯界」,現為專職譯者。曾擔任Discovery頻道與資訊雜誌編譯,現仍定期為《科學人》及《BBC知識》等雜誌翻譯。書籍譯作包括《決斷的演算:預測、分析與好決策的11堂邏輯課》、《勝算:賭的科學與決策智慧》、《愛因斯坦1905》、《氣候創造歷史》、《現代主義烹調》等。目前住在有山有海有美食的台灣頭基隆,熱愛吸收各類知識,正努力朝「全方位譯人」的目標邁進。

目錄

▎自序
這本書的目標有三個:一是以非數學語言讓讀者理解因果革命的詳細內涵,以及它將如何影響我們的生活和未來。二是為讀者介紹科學家遭遇及挑戰關鍵因果問題時,英勇解決的歷程。最後,則是把因果革命帶回人工智慧的最初本源,介紹如何讓機器人學習以我們的母語(即因果語言)溝通。

▎前言:思想勝過資料
法蘭西斯・高爾頓與卡爾・皮爾森運用跨世代資料解答他們對於遺傳的疑問,可惜沒有成功,於是他們開發出「統計」這門爾後興盛數十載的學科。從事研究的人都聽過「相關不是因果」這句統計學名言,該觀念影響學界長期探究「關聯」而不問「因果」。在資料本位的歷史影響下,今日我們甚至認為大數據可解答所有問題,但是朱迪亞・珀爾希望藉此書告訴讀者,資料本身一點也不智慧。1980年代末,研究人工智慧的珀爾發現,「機器無法理解因果關係」可能是它們無法具備人類智慧的關鍵原因,於是他轉而投身因果科學陣營,多年後他藉由這本書,總結了各路科學家推動因果革命的成果。

▎第一章 因果階梯
因果的三個層級/迷你圖靈測驗/機率與因果
珀爾研究機器學習時了解到,因果學習者至少必須掌握三個層級的認知能力,分別是:(一)觀看與觀察,以探知環境中的規律;(二)實行,亦即預測刻意改變環境的效果,並選擇適當改變以獲得想要的結果;以及(三)想像——因果階梯的三個層級「觀察」、「介入」和「反事實」便是由此而來,數學能證明這三個層級有根本上的不同,每個層級都具備前一層級缺少的能力。本章將介紹以因果圖進行推理的基礎概念、主要的建模工具,讓讀者慢慢見識因果推論模型詮釋資料、解答疑問的強大能力。

▎第二章 從海盜到天竺鼠:因果推論的創生
法蘭西斯‧高爾頓捨「因果」而擁抱「相關」/卡爾‧皮爾森把「因果」掃出統計學/萊特、天竺鼠和路徑圖/E PUR SI MUOVE(但地球依然在轉動)/貝氏連結將主觀機率帶進統計學界
十九世紀末,法蘭西斯・高爾頓想將《物種原始》的理論架構數學化,他花了八年嘗試解答族群遺傳特質維持恆定的原因,但是始終無解,最後放棄研究,轉而注意統計「相關」。高爾頓的門徒卡爾・皮爾森後來提出「相關係數」,直到現在,所有統計學家想知道資料組中兩個變項的關聯程度時,總是最先計算這個數字。第二章講述統計學如何忽視因果性,並且對各種資料導向的科學造成深遠影響。此外還將介紹對本書而言十分重要的遺傳學家西瓦爾‧萊特的故事;萊特於1920年代首先繪製因果圖,多年來一直是少數認真看待因果性的科學家。

▎第三章 從證據到原因:當貝斯遇見福爾摩斯
電腦偵探波拿巴(Bonaparte)/貝斯牧師與逆機率問題/從貝氏法則到貝氏網路/貝氏網路:原因透露了哪些關於資料的線索?/我的行李在哪裡?從亞琛到尚吉巴島/真實世界中的貝氏網路/從貝氏網路到因果圖
1980年代初,珀爾認為不確定性是AI所欠缺的最重要的能力,於是運用機率,開發出處理不確定性推理的強大工具——貝氏網路,這是首先讓電腦以「灰階」方式思考的工具,至今仍被視為人工智慧頂尖典範。然而到了1980年代末,珀爾開始覺得自己錯了,他認為貝氏網路仍沒有填補人工智慧和人類智慧的差距。在這一章,他談了自己從貝氏網路忠實信徒變節,轉入因果性陣營的心路歷程。儘管如此,貝氏網路依然是今日人工智慧界極為倚重的工具,而且具備因果圖的許多數學基礎,因此這章以因果性簡略介紹貝氏法則和貝氏推理方法,並為讀者舉出幾個在實際生活中運用貝氏網路的範例。...

自序/導讀

即使僅僅二十年前,問統計學家「是阿斯匹靈讓我頭不痛的嗎?」這類問題,簡直就像問他信不信巫毒教一樣。我們學校有個知名教授說,這問題「比較像聊天話題而不像科學問題」。但是到了現在,流行病學家、社會科學家、電腦科學家,以及至少某些開明的經濟學家和統計學家,已經經常提出這些問題,並精確解答它們。對我而言,這樣的改變不下於革命,我大膽稱它為因果革命(Causal Revolution)。這次科學界變革不再否定我們具備理解原因與結果的天賦,而是主動接受它。

因果革命不是效果不明的孤立事件,它蘊含的數學奧祕可說是因果的微積分,能夠解答古往今來最困難的因果關係問題。我發現這種微積分時非常興奮,不只因為它的發展歷程一波三折、非常有趣,更重要的是我認為它擁有極大潛力,日後的發展可能超乎我的想像……甚至可能超乎各位的想像。

(中略)

剛才我提到「會思考的機器」是刻意的。我是以電腦科學家身分研究人工智慧時,想到這個主題的。這主題讓大多數因果推論研究者分別走向兩個研究方向。首先,在人工智慧領域中,除非我們能教會機器人某個主題,否則就不算真正了解它,所以我一再強調記號、語言、詞彙和文法。舉例來說,我很愛研究我們是否能以某種語言表達某個主張,以及某個主張是否和其他主張吻合。單單只是遵循科學語句的文法,就能讓我們學到許多。我特別強調語言,也源自我深深相信語言會形塑思想。我們無法解答自己無法提出的問題,也不可能提出我們無法描述的問題。身為哲學和電腦科學研究者,我對因果推論的興趣,大多來自看見無人理解的科學語言從誕生到成熟。

促使我研究因果的另一因素,是我也投入機器學習領域。1980年代末,我發現「機器無法理解因果關係」可能是導致機器無法擁有人類智慧的關鍵。在本書的最後一章,我將會回歸根本,和讀者一起探討因果革命對人工智慧的影響。我相信我們能夠研發出強AI,而且正因為因果性是幫助我們研發出強AI的部分原因,我們不需要畏懼這樣的人工智慧。因果推理模組將使機器能夠反省錯誤、指出自身軟體中的缺點、具備道德本體,並與人類自然地談論自己的選擇和意圖。

現實世界的藍圖

在我們這個時代,大家一定聽過「知識」、「智慧」和「資料」,有些讀者或許搞不懂這些詞的差異或它們彼此間的作用。現在我想提出因果模型(causal model)這個詞。各位可能會覺得這會讓大眾更加混淆。
不會的!事實上它能使「知識」這個模糊不清的科學概念變得明確,同時給予資料具體而有意義的背景,並且讓我們了解這三者如何一同運作,解答困難的科學問題。〈圖I.1〉是「因果推論發動機」(causal inference engine)的藍圖,它可協助未來的人工智慧處理因果推論工作。重要的是大家必須了解,它不只是未來的藍圖,還能告訴我們因果模型如何運用在目前的科學用途上,以及因果模型如何與資料交互作用。
(中略)
因果模型還擁有資料探勘和深度學習所缺乏的另一個優點,就是適應能力。注意,在〈圖I.1〉中,被估量僅依據因果模型計算,不需要檢視資料特性。這點使因果推論發動機的適應能力格外強大,因為它計算出來的被估量適用於可用於定性模型的任何資料,不受變項間的數值關係影響。
想了解這種適應力為什麼很重要,可以比較這種發動機和學習者(在這個例子中是人類,但在其他例子中可能是深度學習演算法,或是使用深度學習演算法的人類)試圖單靠資料學習的結果。學習者觀察許多患者服用藥物...

各界推薦/推薦序

▎各界盛讚

◎谷歌網路推廣長文特‧瑟夫:
珀爾近三十年來的學術成就,為人工智慧發展提供堅實的理論基礎……同時把「思考機器」提升到另一個境界。

◎《大演算》作者佩德羅‧多明哥斯:
因果如果不是相關,那又是什麼?拜朱迪亞‧珀爾的劃時代研究之賜,現在我們已能精確回答這個問題。想理解世界如何運行,這本引人入勝且讀來愉快的書是理想的起點。

◎微軟研究實驗室科技研究員及主任艾瑞克‧霍爾維茲:
朱迪亞‧珀爾是人工智慧領域、甚至整個電腦科學界革命的核心人物。

◎諾貝爾經濟學獎得主及《快思慢想》作者丹尼爾‧康納曼 :
各位是否曾疑惑「相關」和「因果」究竟是什麼關係?這本精彩著作深入淺出地說明了答案。

◎《紐約時報》喬納山‧尼伊:解說十分詳盡……本書不僅詳盡介紹概念的發展史,也提供概念工具,讓讀者理解大數據的優勢與不足之處。

◎《自然》雜誌:「相關不是因果」這句科學俗語已在社會上造成影響……朱迪亞‧珀爾提出嶄新的數學解決方案……現在已在生物、醫學、社會科學和人工智慧領域開花結果。

◎《猶太日報》:深入淺出……珀爾是有遠見的因果革命領袖,這本書則是他最大的成就。

▎讀者好評

◎對電腦科學、統計學或人工智慧當今發展有興趣的人都應該讀讀。這本書如同康納曼的《快思慢想》,是作者畢生科學研究的總結,不僅對同領域科學家而言價值非凡,也是全人類的瑰寶。(讀者阿蘭‧約瑟夫‧坎恩)

◎朱迪亞‧珀爾的貝氏網路和因果圖以十分優雅的方式結合統計學、流行病學、決策和電腦科學等領域。他的研究成果賦予並擴大了大數據的潛力。這本書是市面上第一本為一般大眾介紹這主題的書籍,其影響將無以估計。(讀者湯瑪斯 J. 阿拉岡,流行病學家)

◎知名商學研究所都應該用這本書當成教材。我送了一本給我念大學時的院長。為了現在和未來的學生著想,我希望它能成為一門課。(讀者喬治‧莫札奇斯)

Brand Slider