全書共包含18個章節,從概率密度、貝葉斯決策理論引入樣本學習的基本概念,進而介紹了近鄰域學習、核學習及神經網絡學習,在此基礎上探討了PCA學習、VC維概念、函數估計問題等,後重點介紹了非常實用的支持向量機SVM及Boosting方法。各章均包含小結、附錄、習題及參考資料,非常適合於大專院校電腦及電氣工程類碩博士研究生及高年級學生作為教學參考書。
全書共包含18個章節,從概率密度、貝葉斯決策理論引入樣本學習的基本概念,進而介紹了近鄰域學習、核學習及神經網絡學習,在此基礎上探討了PCA學習、VC維概念、函數估計問題等,後重點介紹了非常實用的支持向量機SVM及Boosting方法。各章均包含小結、附錄、習題及參考資料,非常適合於大專院校電腦及電氣工程類碩博士研究生及高年級學生作為教學參考書。