本書通過通俗易懂的語言、豐富的圖示和生動的實例,撥開了籠罩在機器學習上方復雜的數學“烏雲”,讓讀者以較低的代價和門檻入門機器學習。
本書共分為11章,介紹了在Python環境下學習scikit—learn機器學習框架的相關知識,涵蓋的主要內容有機器學習概述、Python機器學習軟件包、機器學習理論基礎、k—近鄰算法、線性回歸算法、邏輯回歸算法、決策樹、支持向量機、樸素貝葉斯算法、PCA算法和k—均值算法等。
本書適合有一定編程基礎的讀者閱讀,尤其適合想從事機器學習、人工智能、深度學習及機器人相關技術的程序員和愛好者閱讀。