本書從實用的角度出發,全方位介紹使用Keras如何解決深度學習中的各類問題。假設讀者無任何關於深度學習編程的基礎知識,本書首先介紹Keras這一高度模塊化、極簡式的深度學習框架的安裝、配置和編譯等平臺搭建知識,而後詳細介紹了度學習所要求的數據預處理、優化、可視化等基本內容,然後詳細講解捲積神經網絡、生成式對抗網絡、遞歸神經網絡這三種深度學習方法並給出相關實例代碼,最後介紹自然語言處理、強化學習兩方面的內容。
本書是一本實踐性很強的深度學習工具書,既適合希望快速學習和使用Keras深度學習框架的工程師、學者和從業者,又特別適合立志從事深度學習和AI相關的行業並且希望用Keras開發實際項目的工程技術人員。
採用Python編寫的Keras能夠快速準確地訓練捲積和遞歸神經網絡,這使得Keras在很短的時間里就成為一個流行的深度學習庫。
本書介紹瞭如何在時下流行的Keras庫的幫助下,解決訓練深度學習模型時遇到的各種問題。從安裝和設置Keras開始,展示瞭如何使用Keras進行深度學習;從加載數據到擬合、評估模型獲得最佳性能,逐步解決工作過程中遇到的每一個問題。在本書的幫助下,你可以分別實現捲積神經網絡、遞歸神經網絡、生成式對抗網絡等。除此之外,本書還講述瞭如何訓練這些模型以完成圖像處理和語言處理的任務。
本書最後還給出了一些實例,可以幫助你直觀地瞭解Python和Keras在深度學習上的強大功能。
通過閱讀本書,你將學到:
• 在TensorFlow中安裝和配置Keras
• 使用Keras庫進行神經網絡編程
• 瞭解不同的Keras層
• 使用Keras實現簡單的前饋神經網絡、捲積神經網絡和遞歸神經網絡
• 使用各種數據集和模型進行圖像和文本分類
• 使用Keras開發文本摘要和強化學習模型