TensorFlow 自然語言處理 | 拾書所

TensorFlow 自然語言處理

$ 469 元 原價 594

本書是一本使用深度學習算法和TensorFlow來編寫現代自然語言處理應用程序的實踐指南,內容涉及詞嵌入的各種方法、CNN/RNN/LSTM的TensorFlow實現及應用、LSTM在文本生成及圖像標題生成的應用、從統計機器翻譯到神經網絡翻譯以及自然語言處理的未來。通過閱讀本書,你將深入認識NLP(自然語言處理),並學習如何在深度學習NLP任務中應用TensorFlow,以及如何執行特定的NLP任務。
全書共11章,第1章簡要介紹NLP;第2章介紹如何編寫客戶端程序並在TensorFlow中運行它們;第3章介紹如何用神經網絡學習單詞向量或單詞表示;第4章介紹與單詞向量相關的更高級方法;第5章討論捲積神經網絡(CNN);第6章介紹遞歸神經網絡;第7章介紹長短期記憶網絡;第8章介紹LSTM的應用:文本生成;第9章介紹LSTM的應用:圖像標題生成;第10章介紹有關神經機器翻譯(NMT)模型的應用;第11章重點介紹NLP的現狀和未來趨勢。

深度學習應用所使用的大部分數據是由自然語言處理(NLP)提供的,而TensorFlow是目前比較重要的深度學習框架。面對當今巨量數據流中眾多的非結構化數據,本書詳細講解如何將TensorFlow與NLP二者結合以提供有效的工具,以及如何將這些工具應用於具體的NLP任務。
本書首先介紹NLP和TensorFlow的基礎知識,之後講解如何使用Word2vec及其高級擴展,以便通過創建詞嵌入將詞序列轉換為深度學習算法可用的向量。本書還介紹如何通過捲積神經網絡(CNN)和遞歸神經網絡(RNN)等經典深度學習算法執行句子分類和語言生成等重要的NLP任務。你將學習如何在NLP任務中應用高性能的RNN模型(比如長短期記憶單元),還將認識神經機器翻譯,並實現一個神經機器翻譯器。
通過閱讀本書,你將學到:
NLP的核心概念和各種自然語言處理方法
使用TensorFlow函數創建神經網絡以完成NLP任務
將海量數據處理成可用於深度學習應用的單詞表示
使用CNN和RNN執行句子分類和語言生成
使用最先進的RNN(如長短期記憶)執行復雜的文本生成任務
從頭開始編寫一個真正的神經機器翻譯器
未來的NLP趨勢和創新

Brand Slider