本書在歐美是一本流行的時間序列分析教材,通過大量使用真實數據的實例展示解決問題的方法,
例如發現自然和人為的氣候變化、使用功能磁共振成像評估疼痛感知實驗以及監測核禁試條約。
本書旨在作為物理、生物學和社會科學領域,以及統計學方向高年級本科或研究生教材。
本書從不同層次深入探討時間序列分析理論和方法,除了涵蓋經典的時間序列回歸方法、ARIMA模型、譜分析和狀態空間模型外,
還介紹了新近發展的方法,包括分類變量時間序列分析、多元譜方法、長記憶時間序列、非線性模型、重採樣技術、
GARCH模型、ARMAX模型、隨機波動率、小波和馬爾可夫鏈蒙特卡羅積分方法。
第4版的更新:
重做所有圖形和繪圖並使其樣式統一。
貝葉斯部分完全重寫,僅覆蓋線性高斯狀態空間模型。
每個實例的R代碼直接在正文中提供,以便於重復數據分析過程。
擴展了附錄部分,其中包含基本的R和R時間序列命令的指南。