大數據時代,快速分析數據並從中提取有效信息是所有數據科學家必須完成的任務。本書由分析領域的專家撰寫,面向所有對數據科學感興趣的讀者,既是初學者的必備入門指南,也可幫助不同行業的技術人員擴充工具庫,實現數據分析技能的快速提升。
元分析既是混合分析,也是關於分析的分析。本書既討論元方法,也講解常規的分析方法和分析系統,特別是提供了一系列詳盡的模式和方法,它們可用於任何基於機器學習的數據分析任務。通過學習這些方法,你至少能找到一種更為有效的模式,並且獲得優於傳統分析方法的整體系統行為。
通過閱讀本書,你將學習以下知識:
背景知識,涉及統計學、算法、機器學習和人工智能等方面,涵蓋回歸、聚類、馬爾可夫模型、熵、支持向量機、降維和神經網絡等概念,並演示瞭如何構建分別適用於二分類和一般情況的分類器。
真值獲取與真值估算,提出了打破傳統“訓練、驗證和測試”模式的新模式。
實驗設計與設計模式,前者包括數據歸一化、剪枝老化數據和系統之系統,後者包括累積響應模式、分析的優化和模型一致性模式。
分析系統的各個方面,包括靈敏度分析、大型系統工程、建模與擬合、同義詞-反義詞模式、強化-無效化模式以及系統設計的優化等,引入了射幸技術和專家系統技術等概念。
應用與挑戰,介紹元分析在機器翻譯、機器人技術、醫學和金融等領域的廣泛應用,並暢想了元分析的未來。