大數據時代的算法:機器學習、人工智能及其典型實例 | 拾書所

大數據時代的算法:機器學習、人工智能及其典型實例

$ 250 元 原價 294

<內容簡介>

 
本書介紹在因特網行業中經常涉及的算法,包括排序算法、查找算法、資源分配算法、路徑分析算法、相似度分析算法,以及與機器學習相關的算法,包括數據分類算法、聚類算法、預測與估算算法、決策算法、關聯規則分析算法及推薦算法。本書涉及的相關算法均為解決實際問題中的主流算法,對於工作和學習都有實際參考意義。本書是一本算法領域內的技術參考書籍,涵蓋數十種算法,通過由淺入深的介紹基礎算法和機器學習算法相關理論和應用,闡述了各個算法的應用場景及算法複雜度,使讀者對算法的理解不只是停留在錶面,還從應用的角度提供了大量實例,使讀者能夠快速、高效進階各類算法,並能夠熟練應用到將來的工作實踐中。

 

 

<章節目錄>
 

第1章算法基礎1
1.1基礎算法分析類型1
1.1.1分治法1
1.1.2動態規劃法2
1.1.3回溯法3
1.1.4分支限界法4
1.1.5貪心法4
1.2算法性能分析5
1.3概率論與數理統計基礎6
1.4距離計算8
1.4.1歐氏距離8
1.4.2馬氏距離9
1.4.3曼哈頓距離9
1.4.4切比雪夫距離9
1.4.5閔氏距離9
1.4.6海明距離10
1.5排序算法10
1.5.1快速排序11
1.5.2歸併排序11
1.5.3堆排序13
1.5.4基數排序15
1.5.5外排序16
1.6字符壓縮編碼17
1.6.1哈夫曼編碼17
1.6.2香農-範諾編碼21
1.7本章小結24

 


第2章數據查找與資源分配算法25
2.1數值查找算法25
2.1.1二分搜索算法25
2.1.2分塊查找27
2.1.3哈希查找28
2.2字符串查找算法30
2.2.1 Knuth-Morris-Pratt算法31
2.2.2 Boyer-Moore算法34
2.2.3 Sunday算法37
2.3海量數據中的查找39
2.3.1基於布隆過濾器查找39
2.3.2倒排索引查找41
2.4銀行家算法43
2.5背包問題45
2.5.1 0-1背包問題45
2.5.2部分背包問題47
2.6本章小結47

  


第3章路徑分析算法49
3.1基於Dijkstra算法的路徑分析49
3.1 .1應用示例:極地探險49
3.1.2基於Dijkstra的最短路徑規劃50
3.2基於Floyd算法的路徑分析53
3.2.1應用示例:任意兩個城市之間的最短路徑53
3.2.2 Floyd原理54
3.2. 3基於Floyd算法計算兩個城市最短距離56
3.3基於A*算法的路徑搜索58
3.3.1應用實例:繞過障礙區到達目的地58
3.3.2 A*算法與最短距離計算59
3.4基於維特比算法的概率路徑61
3.4.1應用實例:推斷天氣狀態61
3.4.2維特比算法思想62
3.4.3計算天氣狀態62
3.5最長公共子序列問題64
3.5.1概要64
3.5.2最長公共子串64
3.5.3最長公共子序列原理66
3.5.4實例:求兩字符串的最長公共子序列66

Brand Slider