深度學習、優化與識別 (Deep Learning,Optimization and Recognition) | 拾書所

深度學習、優化與識別 (Deep Learning,Optimization and Recognition)

$ 607 元 原價 768

內容簡介
深度神經網絡是近年來受到廣泛關註的研究方向,它已成為人工智能2.0的主要組成部分。本書系統地論述了深度神經網絡基本理論、算法及應用。

全書共16章,分為兩個部分

第一部分(第1章~10章)系統論述了理論及算法,包括深度前饋神經網絡、深度捲積神經網絡、深度堆棧神經網絡、深度遞歸神經網絡、深度生成網絡、深度融合網絡等

第二部分(第11~15章)論述了常用的深度學習平臺,以及在高光譜圖像、自然圖像、SAR與極化SAR影像等領域的應用;第16章為總結與展望,給出了深度學習發展的歷史圖、前沿方向及最新進展。

每章都附有相關閱讀材料及模擬代碼,以便有興趣的讀者進一步鑽研探索。
本書可為高等院校電腦科學、電子科學與技術、信息科學、控制科學與工程、人工智能等領域的研究人員提供參考,以及作為相關專業本科生及研究生教學參考書,同時可供深度學習及其應用感興趣的研究人員和工程技術人員參考。

《深度學習、優化與識別》的特色

深度學習是計算機科學與人工智能的重要組成部分。全書16章,分為理論與實踐應用兩部分,同時介紹5種深度學習主流平臺的特性與應用,最後給出了深度學習的前沿進展介紹,另附帶47種相關網絡模型的實現代碼。本書具有以下的特點:

一、內容系統全面

全書16章,覆蓋了深度學習當前出現的諸多經典框架或模型,分為兩個部分。第一部分系統地從數據、模型、優化目標函數和求解等四個方面論述了深度學習的理論及算法,如捲積神經網絡、深度生成模型等;第二部分基於5種主流的深度學習平臺給出了深度網絡在自然圖像、衛星遙感影像等領域的應用,如分類、變化檢測、目標檢測與識別等任務。另外給出了深度學習發展的脈絡圖及最新研究進展,提供可基於5種平臺實現的47中深度網絡代碼,以便有興趣的讀者進一步鑽研探索。

二、敘述立場客觀

作為深度學習的入門教材,盡可能不帶偏見地對材料進行分析、加工以及客觀介紹。本書理論部分均從模型產生的本源來介紹,並給出各個經典模型之間內在的相互聯繫。本書實踐應用部分對相關任務做了詳盡的分析,並給出深度學習應用實踐的經驗總結。

三、設計裝幀精美

該書設計人性化,文字、公式、數學符號混排格式美觀精緻,特別是,全書採用全彩印製,軟精裝裝幀。封面設計清新卻不脫俗、學術化,足可以看出出版社和作者的用心。

Brand Slider