本書介紹內容包括支持向量機、線性回歸、決策樹、遺傳算法、深度神經網絡(VGG、GooleLeNet、Resnet、MobileNet、EfficientNet)、循環神經網絡(LSTM、GRU、Attention)、生成對抗網絡(DCGAN、WGAN-GP)、自編碼器、各種聚類算法、目標檢測算法(YOLO、MTCNN)以及強化學習,有助於人工智能新人搭建一個全面且有用的基礎框架。 ?本書包含8個實戰,分別是:決策樹、MNIST手寫數字分類、GAN基礎之手寫數字生成、GAN優化、風格遷移、目標檢測(YOLO)、人臉檢測(MTCNN)和自然語言處理。8個實戰可以讓讀者對PyTorch的使用達到較高水平。