本書是一部論述機器學習原理與算法的立體化教材(含紙質圖書、教學課件和部分視頻教程),本書兼顧機器學習基礎、經典方法和深度學習方法。對組成機器學習的基礎知識和基本算法做了比較細致的介紹,對廣泛應用的經典算法如線性回歸、邏輯回歸、樸素貝葉斯、支持向量機、決策樹和集成學習等算法都給出了深入的分析,並討論了無監督學習的基本方法。用5章的篇幅對深度學習和深度強化學習做了相當全面的敘述,不僅深入地討論了反向傳播算法、多層感知機、CNN網絡、RNN網絡和LSTM結構等深度神經網絡的核心知識和結構,對於一些發展中的專題如生成對抗網絡(GAN)和Transformer等也予以一定深度的介紹。對於強化學習,不僅介紹了經典表格方法,也較詳細地討論了深度強化學習。本書是面向大學理工科和管理類各專業的一本寬口徑、綜合性機器學習教材,可供本科高年級和研究生課程使用,也可供科技人員、工程師和程序員自學機器學習的原理和算法之用。本書對基礎和前沿、經典方法和熱門技術做了盡可能地平衡,使得讀者不僅能在機器學習領域打下一個良好的基礎,同時也可以利用所學知識解決遇到的實際問題並進入學科前沿。