本書介紹機器學習經典算法的原理、實現及應用,並通過綜合案例講解如何將實際問題轉換為機器學習能處理的問題進行求解。本書配套源碼、PPT課件、習題答案、開發環境與QQ群答疑。
本書共分14章。內容包括k近鄰算法、樸素貝葉斯、聚類、EM算法、支持向量機、決策樹、線性回歸、邏輯回歸、BP神經網絡經典算法,以及垃圾郵件分類、手寫數字識別、零售商品銷售量分析與預測、個性化推薦等綜合案例。本書算法首先給出了數學原理及公式推導過程,然後給出算法實現,最後所有算法及案例均以Python實現,方便讀者在動手編程中理解機器學習的經典算法。
本書適合Python機器學習初學者、機器學習開發人員和研究人員使用,也可作為高等院校計算機、軟件工程、大數據、人工智能等相關專業的本科生、研究生學習人工智能、機器學習的教材。
本書共分14章。內容包括k近鄰算法、樸素貝葉斯、聚類、EM算法、支持向量機、決策樹、線性回歸、邏輯回歸、BP神經網絡經典算法,以及垃圾郵件分類、手寫數字識別、零售商品銷售量分析與預測、個性化推薦等綜合案例。本書算法首先給出了數學原理及公式推導過程,然後給出算法實現,最後所有算法及案例均以Python實現,方便讀者在動手編程中理解機器學習的經典算法。
本書適合Python機器學習初學者、機器學習開發人員和研究人員使用,也可作為高等院校計算機、軟件工程、大數據、人工智能等相關專業的本科生、研究生學習人工智能、機器學習的教材。