需要處理大量資料的人必備的案頭書
對於許多研究人員來說,Python是首選的工具,因為它擁有豐富的儲存、操作、以及洞察資料的程式庫。這些資源散布在資料科學的領域中,但藉由本書,你可以一口氣取得這些資源,包括Ipython、NumPy、Pandas、Matplotlib、Scikit-Learn等等。
對於需要處理大量資料的人而言,這是一本非常有價值的案頭書,可以有效率地處理每天面對的問題,像是操作、轉換,以及清理資料、視覺化不同形式的資料,建立統計學或機器學習的模型等等。
藉由這本手冊,你將可以學習到如何使用:
.IPython和Jupyter:提供資料科學家使用的Python計算環境。
.NumPy:在Python中進行高效儲存以及操作密集資料陣列的ndarrys。
.Pandas:在Python中進行對於標籤式/欄位式的資料高效率儲存與操作。
.Matplotlib:在Python中進行彈性範圍的資料視覺化的能力。
.Scikit-Learn:提供機器學習演算法以及簡潔的Python實作。
對於許多研究人員來說,Python是首選的工具,因為它擁有豐富的儲存、操作、以及洞察資料的程式庫。這些資源散布在資料科學的領域中,但藉由本書,你可以一口氣取得這些資源,包括Ipython、NumPy、Pandas、Matplotlib、Scikit-Learn等等。
對於需要處理大量資料的人而言,這是一本非常有價值的案頭書,可以有效率地處理每天面對的問題,像是操作、轉換,以及清理資料、視覺化不同形式的資料,建立統計學或機器學習的模型等等。
藉由這本手冊,你將可以學習到如何使用:
.IPython和Jupyter:提供資料科學家使用的Python計算環境。
.NumPy:在Python中進行高效儲存以及操作密集資料陣列的ndarrys。
.Pandas:在Python中進行對於標籤式/欄位式的資料高效率儲存與操作。
.Matplotlib:在Python中進行彈性範圍的資料視覺化的能力。
.Scikit-Learn:提供機器學習演算法以及簡潔的Python實作。