決斷的演算:預測、分析與好決定的11堂邏輯課(暢銷紀念精裝版) | 拾書所

決斷的演算:預測、分析與好決定的11堂邏輯課(暢銷紀念精裝版)

$ 540 元 原價 600
為什麼電腦科學家說,賽局理論「奈許均衡」的地位言過其實,
現代投資組合理論也不是資產配置的好建議?
亞馬遜書店「商務決策與問題解決類」、「電腦科學類」與「認知科學類」Top 1,
《麻省理工科技評論》選為年度最佳書籍,
各界讀者讚不絕口:「真是過癮!」


訪問近五十年來最知名演算法的設計者,
了解工程師如何教電腦發揮最大效用,並將所學用於生活。
讀者大推:「真是過癮!」
「主動向機器學習」是人工智慧時代最核心、最有效的學習方法之一,在《決斷的演算》裡,各具心理學、統計學與電腦科學背景的兩位作者揭櫫:為何跟電腦學決策你不僅不會變成理性魔人,反而會更加明智且善體人意。

▎說到演算法,你想到的是政府和大企業如何利用數學模型算計你?
其實,演算法的本質是「解決問題的一連串步驟」,它的發展遠遠早於電腦,不只長期為各研究領域與產業實務帶來重大變革,更能幫助個人跳脫盲點與錯誤直覺,明快地解決問題。

▎說到機器學習,你以為考慮因素越多越好、比較複雜的模型較佳?
其實,當今電腦運算時並非套用死板的演繹邏輯,點滴不漏地羅列所有選擇,琢磨出正確答案。它們會捨棄不必要的資料,偏向選擇較簡單的解答,權衡誤差或延遲的代價,接著冒險一試。

▎說到電腦,你認為它冰冷且毫無彈性,思考方式跟人腦南轅北轍?
事實上,我們面臨的許多挑戰,跟電腦科學家一樣都源於:要運用有限的空間、時間和注意力,因應未知事物和不完整的資訊,因此電腦解決問題的方式,能在極大程度上與人們的作法融合。

《決斷的演算》各章以常見的日常問題開場,從釐清它們的演算結構著手,以問題所屬類型為骨架(副章名),紮實的電腦科學發展史為血肉(章名),探討一代代的研究者為這類問題找出什麼解決方案,這些收穫顛覆了我們對於「合理」的看法,不僅幫助其他領域獲得新進展,也為個人生活帶來實用啟示,像是:

❖證明「所有雙人賽局至少有一個均衡狀態」的奈許均衡,讓約翰.奈許拿下了諾貝爾經濟獎,但它的地位可能言過其實。為什麼?(賽局理論)
❖自動駕駛汽車能改善交通阻塞,打造交通天堂?你可能要失望了。現在自私駕駛人各行其是的情形其實已接近最佳狀態。(演算法賽局理論,自主行為代價)
❖棉花糖實驗證明了意志力對日後的成就有深遠影響?事情沒這麼簡單。抵擋得住誘惑的另一個關鍵可能是「期望」……(貝氏法則)
❖以現代投資組合理論榮獲諾貝爾經濟獎的馬可維茲,居然把自己的退休金平均投資在債券和股票上!這未免太不聰明了?未必。(過度配適)
❖歐巴馬競選總統時,他的新媒體分析團隊靠什麼方法設計與經營網站,幫他多募得五千七百萬美元?(開發與善用)
❖安排球季賽程真麻煩!怎麼樣既符合聯盟基本結構產生的規定,又顧及聯盟和轉播電視台的特殊考量和限制?(鬆弛)
❖2010年5月6日,美國股市發生閃電崩盤,短短幾分鐘內有幾家公司股價飆漲、另幾家則直線崩跌,這是怎麼回事?(賽局理論,資訊瀑布)
❖一般認為年老健忘是認知衰退,但電腦科學家判斷,那是整理、取捨越來越多記憶的必然結果——人的腦袋可靈光了!(快取)
❖你打算在十八歲到四十歲期間覓得人生伴侶,那麼幾歲時選定的對象可能最好?答案是二十六歲。(最佳停止點,37%法則)
❖紙本資料用完隨手往旁邊疊,既沒條理又沒效率?不,根據演算法原理,這是目前已知最精良、效率最佳的資料結構。(快取)
❖什麼情況下,隨便挑一封電子郵件回覆,會好過先回覆最重要的郵件?(排程,往復移動)
❖為什麼玩吃角子老虎時,贏錢繼續玩同一台是好策略,但是輸錢就換一台則太過輕率?(開發與善用)……………

電腦科學還能協助我們清楚劃分哪些問題有明確解答、哪些則無,從而選擇自己要面對什麼,以及要讓其他人面對什麼——這種「運算的善意」可以改變人們的認知問題類型,減輕認知負擔,增進互動的效率。

▎本書用法:
這本書既適合一般讀者,也適合教學使用,版面設計兼顧兩者需求,使用方法詳見書中建議。各章內容提示詳見〈目錄〉的引文。

Brand Slider