我們在國中時學到平面幾何,到了高中時學圓錐曲線。前者採用(綜合)幾何的方法,後者則採用坐標幾何的方法,因此前者很有幾何味道,後者則淡的多,甚至沒有。古代的圓錐截痕,需要以平面幾何為基礎,更需要有立體幾何的能耐,幾何味道滿點。此書的一大重點就是要呈現圓錐截痕的這些菁華。另外加上坐標成了「圓錐曲線」,能更深入研究圓錐曲線與行星運動之間的連結。最後,再把重點放在射影性質,利用綜合幾何的方法,了解到橢圓、雙曲線和拋物線之間密切的關係。
我們在國中時學到平面幾何,到了高中時學圓錐曲線。前者採用(綜合)幾何的方法,後者則採用坐標幾何的方法,因此前者很有幾何味道,後者則淡的多,甚至沒有。古代的圓錐截痕,需要以平面幾何為基礎,更需要有立體幾何的能耐,幾何味道滿點。此書的一大重點就是要呈現圓錐截痕的這些菁華。另外加上坐標成了「圓錐曲線」,能更深入研究圓錐曲線與行星運動之間的連結。最後,再把重點放在射影性質,利用綜合幾何的方法,了解到橢圓、雙曲線和拋物線之間密切的關係。