■ 依據商業分析之型態與階段,全書共規劃十三章,分成敘述性分析 (descriptive analytics)、預測性分析 (predictive analytics),以及指示性分析(prescriptive analytics) 三大篇來介紹。
● 第1 章為緒論,目的在於提供讀者一個對商業分析的初步認識。
● 第 2 至第 5 章為敘述性分析篇:包含敘述統計分析、機率、推論統計分析及敘述性資料探勘的相關方法與應用。這些技術將收集來的多源資料進行整理與分析,並探索資料的樣貌、關聯與背後的涵義。
● 第 6 至第9 章為預測性分析篇︰包含迴歸分析、預測性資料探勘、時序資料預測的相關方法與應用。這些技術以現有資料建立預測模式,藉以推估以往未知的資訊,或回答未來發展的趨勢。第9 章介紹文本資料的處理與分析,文本資料經過結構化與數值化處理後即可視為一般資料,使用敘述性分析及預測性分析來進行後續應用。
● 第 10 至第 13 章為指示性分析篇:包含線性規劃、整數規劃、非線性規劃及決策分析的相關方法與應用。這些技術皆是考量決策過程中必須納入之限制情況,再依決策者心中的決策目標(方向),透過數學模式的建構,求算出最佳決策。
■ 本書適用於商管科系大學部及 MBA一年級有意學習商業分析之同學,內容包含統計學、資料處理、資料視覺化、資料分析、最佳化等科學領域,強調利用資料學習知識,亦可作為學習資料科學的入門教材。
■ 對於曾經學習過上述技術的同學而言,透過本書當能更清楚知道如何整合性地使用這些技術來擷取商業資料中的意涵與見解;未曾接觸過之同學,本書亦能妥善指引同學們依循商業分析架構,逐步建立商業分析基礎能力。
● 第1 章為緒論,目的在於提供讀者一個對商業分析的初步認識。
● 第 2 至第 5 章為敘述性分析篇:包含敘述統計分析、機率、推論統計分析及敘述性資料探勘的相關方法與應用。這些技術將收集來的多源資料進行整理與分析,並探索資料的樣貌、關聯與背後的涵義。
● 第 6 至第9 章為預測性分析篇︰包含迴歸分析、預測性資料探勘、時序資料預測的相關方法與應用。這些技術以現有資料建立預測模式,藉以推估以往未知的資訊,或回答未來發展的趨勢。第9 章介紹文本資料的處理與分析,文本資料經過結構化與數值化處理後即可視為一般資料,使用敘述性分析及預測性分析來進行後續應用。
● 第 10 至第 13 章為指示性分析篇:包含線性規劃、整數規劃、非線性規劃及決策分析的相關方法與應用。這些技術皆是考量決策過程中必須納入之限制情況,再依決策者心中的決策目標(方向),透過數學模式的建構,求算出最佳決策。
■ 本書適用於商管科系大學部及 MBA一年級有意學習商業分析之同學,內容包含統計學、資料處理、資料視覺化、資料分析、最佳化等科學領域,強調利用資料學習知識,亦可作為學習資料科學的入門教材。
■ 對於曾經學習過上述技術的同學而言,透過本書當能更清楚知道如何整合性地使用這些技術來擷取商業資料中的意涵與見解;未曾接觸過之同學,本書亦能妥善指引同學們依循商業分析架構,逐步建立商業分析基礎能力。