硬派學習 AI 才能紮穩根基!
許多 Python 開發人員初接觸機器學習、深度學習, 往往一開始就使用當紅的 Tensorflow、Keras 等 AI 框架, 只用了短短六行就寫出一隻神經網路程式, 接著就針對參數開始東調西調、訓練模型, 為了提高神經網路模型的準確率 (Accuracy) 96.6% → 97.4% → 98.9%...而奮戰著。
只需六行?調調參數?看起來 AI 好像也不難學的樣子, 但, 這樣子就算懂 AI?
那可不一定!Tensorflow、Keras 等框架的確大幅降低你寫程式的時間成本, 卻不代表可以降低你學 AI 的學習成本, 沒有從 AI 底層運算紮實學起, 千萬別說你已經懂機器學習、深度學習!
「你在調整參數、追求準確率的過程中, 真的清楚了解每個選項背後代表的運算嗎?」
「你有自己一步一步算過 Mini-batch 的梯