Chapter1 資料的概念:在最開始的地方,以一系列的案例讓讀者認識到資料的價值(1.1),並且學習透過資料的型態(1.2) 和尺度(1.3) 來認識資料。
Chapter2 Python 基礎:對於沒有程式基礎的讀者,會從 Python的介紹和環境安裝(2.1 ∼ 2.2) 開始,並且介紹一些基礎的程式語法與邏輯(2.3 ∼ 2.4),讓讀者可以快速上手Python。
Chapter3 基本數值資料處理:分別介紹在資料分析中最常用到的NumPy(3.1) 和Pandas(3.2),讓讀者可以對各種基本的資料進行處理與分析。
Chapter4 各式資料處理:除了基本的數值資料以外,更進一步介紹對於影像(4.1 ∼ 4.2)、音訊(4.3 ∼ 4.4)、文字(4.5 ∼ 4.6) 類型資料的觀念與實作。
Chapter5 資料前處理:專門介紹各種拿到資料後要先做的前處理方式,包含資料清理(5.1)、資料轉換(5.2),以及如何進行合適的資料視覺化(5.3)。
Chapter6 其他專題補充:針對本書無法展開的內容,透過一個個小實作專題進行補充介紹,包含探索式分析(6.1)、網頁爬蟲(6.2)、機器學習與模型評估(6.3)、ChatGPT API(6.4)、HuggingFace(6.5)、資料管線(6.6)、常見誤區(6.7) 等。