結合雲端、立足現場!
8個法則,讓你把大數據由「潮流」化為「營收」
當你聽到大數據在行銷領域的運用,你是不是想到類似「啤酒」與「尿布」的例子?公司檢視來自網路及實體通路收銀機的銷售資料,發現買尿布的男客人,同時買啤酒的機率很高。因此公司立刻通知通路人員,把尿布與啤酒放在一起,營業額於是快速成長。
很可惜,企業在大數據的運用上,立竿見影的發現很少發生,要透過層層的梳理,才可以找到有效的運用。因此在利用大數據的過程中必須處理一連串的問題,化解一連串的迷思才能替公司帶來實際的效果。
一家日本的餐廳想知道增加熟客的來店比率是否有助於提升業績!他們把熟客的定義為一周來店三次的客人,打算對他們推出促銷方案,但是實際進行時發現一周來店三次的客人根本沒有幾個,於是只好改變熟客的定義!
一家公司聘用了外部的資料科學家,來進行資料分析,得到的結果興沖沖的和現場的銷售人員分享!但對方的回應是:你的資料有問題,和現況完全不符!
由於大數據是科技浪潮的代表性名詞,因此大家對它的作用存在很大的幻想,期望它對公司產生快速而巨大的影響。不過,大數據的用途多半相對平實。日本軟銀(SoftBank)的電信服務,在95%以上的區域通訊良好,但是少數地方會傳回通訊不良的訊號,於是公司針對極少數通訊不良的地方進行改進,最後在同業中,因為這些小幅的改進而贏得更高的滿意度。
8個法則,讓你把大數據由「潮流」化為「營收」
當你聽到大數據在行銷領域的運用,你是不是想到類似「啤酒」與「尿布」的例子?公司檢視來自網路及實體通路收銀機的銷售資料,發現買尿布的男客人,同時買啤酒的機率很高。因此公司立刻通知通路人員,把尿布與啤酒放在一起,營業額於是快速成長。
很可惜,企業在大數據的運用上,立竿見影的發現很少發生,要透過層層的梳理,才可以找到有效的運用。因此在利用大數據的過程中必須處理一連串的問題,化解一連串的迷思才能替公司帶來實際的效果。
一家日本的餐廳想知道增加熟客的來店比率是否有助於提升業績!他們把熟客的定義為一周來店三次的客人,打算對他們推出促銷方案,但是實際進行時發現一周來店三次的客人根本沒有幾個,於是只好改變熟客的定義!
一家公司聘用了外部的資料科學家,來進行資料分析,得到的結果興沖沖的和現場的銷售人員分享!但對方的回應是:你的資料有問題,和現況完全不符!
由於大數據是科技浪潮的代表性名詞,因此大家對它的作用存在很大的幻想,期望它對公司產生快速而巨大的影響。不過,大數據的用途多半相對平實。日本軟銀(SoftBank)的電信服務,在95%以上的區域通訊良好,但是少數地方會傳回通訊不良的訊號,於是公司針對極少數通訊不良的地方進行改進,最後在同業中,因為這些小幅的改進而贏得更高的滿意度。