內容簡介
機器學習的數學:用數學引領你走進AI的神秘世界
內容簡介
【數學王道】 02
以最平易近人的方式講解數學!
撬開機器學習大門的最佳學習教材!
人工智慧、機器學習、深度學習
它們的底層都是數學,得數學得天下!
300多幅插圖
100多個範例
50多個公式推導
《機器學習的數學》是一本系統化介紹機器學習所涉及的數學知識之入門書籍,本書從入門開始,以平易的介紹方式為原則,講解了機器學習中一些常見的數學知識。機器學習作為人工智慧的核心技術,對於數學基礎薄弱的人來說,其台階是陡峭的,本書致力於在陡峭的台階前搭建一個斜坡,為讀者鋪平機器學習的數學之路。
《機器學習的數學》共19章,分為線性代數、高等數學和機率3個組成部分。第 1 部分包括向量、向量的點積與叉積、行列式、代數餘子式、矩陣、矩陣和聯立方程式、矩陣的秩、逆矩陣、高斯—喬登消去法、消去矩陣與置換矩陣、矩陣的LU分解、歐幾里得距離、曼哈頓距離、切比雪夫距離、夾角餘弦等;第2部分包括導數、微分、不定積分、定積分、弧長、偏導、多重積分、參數方程式、極座標系、柱座標系、球座標系、梯度、梯度下降演算法、方向導數、線性近似、二階近似、泰勒公式、牛頓法、最小平方法、求解極值、拉格朗日乘子法、KKT條件、歐拉—拉格朗日方程式等;第3部分包括機率、古典概型、幾何概型、互斥事件、獨立事件、分佈函數、離散型分佈、連續型分佈等。
《機器學習的數學》內容全面,文字精練,實例典型,實用性強,出發點為「平易數學」,與機器學習完美對接,適合想要瞭解機器學習與深度學習但數學基礎較為薄弱的程式設計師閱讀,也適合作為機器學習的相關專業教材。機器學習及數學愛好者、資料探勘與分析人員、金融智慧化從業人員等也可選擇本書進行參考學習。
內容簡介
【數學王道】 02
以最平易近人的方式講解數學!
撬開機器學習大門的最佳學習教材!
人工智慧、機器學習、深度學習
它們的底層都是數學,得數學得天下!
300多幅插圖
100多個範例
50多個公式推導
《機器學習的數學》是一本系統化介紹機器學習所涉及的數學知識之入門書籍,本書從入門開始,以平易的介紹方式為原則,講解了機器學習中一些常見的數學知識。機器學習作為人工智慧的核心技術,對於數學基礎薄弱的人來說,其台階是陡峭的,本書致力於在陡峭的台階前搭建一個斜坡,為讀者鋪平機器學習的數學之路。
《機器學習的數學》共19章,分為線性代數、高等數學和機率3個組成部分。第 1 部分包括向量、向量的點積與叉積、行列式、代數餘子式、矩陣、矩陣和聯立方程式、矩陣的秩、逆矩陣、高斯—喬登消去法、消去矩陣與置換矩陣、矩陣的LU分解、歐幾里得距離、曼哈頓距離、切比雪夫距離、夾角餘弦等;第2部分包括導數、微分、不定積分、定積分、弧長、偏導、多重積分、參數方程式、極座標系、柱座標系、球座標系、梯度、梯度下降演算法、方向導數、線性近似、二階近似、泰勒公式、牛頓法、最小平方法、求解極值、拉格朗日乘子法、KKT條件、歐拉—拉格朗日方程式等;第3部分包括機率、古典概型、幾何概型、互斥事件、獨立事件、分佈函數、離散型分佈、連續型分佈等。
《機器學習的數學》內容全面,文字精練,實例典型,實用性強,出發點為「平易數學」,與機器學習完美對接,適合想要瞭解機器學習與深度學習但數學基礎較為薄弱的程式設計師閱讀,也適合作為機器學習的相關專業教材。機器學習及數學愛好者、資料探勘與分析人員、金融智慧化從業人員等也可選擇本書進行參考學習。
ISBN: 9789864345113