懶人圖解統計學:統整複雜數據,看穿大數據背後真相 | 拾書所

懶人圖解統計學:統整複雜數據,看穿大數據背後真相

$ 315 元 原價 315
內容簡介


擁有統計力,就能提升解決問題的能力
用圖像思考分析「現在」,用數學邏輯演算「未來」
用最不燒腦的方式學習統計學!
【設計生活化情境題】+【資料視覺化】+【專有名詞變白話】

淡江大學統計學系教授 林志娟審訂推薦
統計學博士 程毅豪 誠心推薦

一看就懂的統計學新手入門書
就算「沒有統計知識」也沒關係!
從基本原理開始,一點一點詳細說明
快速掌握必備觀念,輕鬆漫遊大數據時代

統計學哪裡只是公式運算,更是生活的準則、日常的指標!
★擲骰子、丟硬幣、中樂透,遊戲輸贏一瞬間,人生賽局是命運還是機會?
★調查收視率可以掌握市場變化,看準投資方向一點也不難!
★拚經濟跟統計有關,玩政治也跟統計有關,一切都在計算之中!
★數據展現實力!棒球迷如何從統計視角一窺棒球場上孰強孰弱?
★班佛定律可以教你識破會計數字是真是假,看出是誰在幕後以假亂真?

●打好統計學的基礎,應用在你的工作上!
●適合初學統計的人,以及想重新學統計的人!
●用每章最後的練習題與詳細解說,確認你理解了多少。

用「最短」、「最快」的方式學習統計學!
「統計學」總給人很艱澀的印象。不過,只要從基礎開始一步步學習,就會發現統計學其實一點也不難。即使是從來沒學過任何統計學知識的人,閱讀本書時也不會有任何障礙,而是能在不知不覺中讀完這本書,明白到統計學的本質。統計學是「分析現在、預測未來」的最強「技術」。請各位在讀完本書後,化統計學為自身的力量吧!

作者簡介


作者簡介

今野紀雄(Norio Konno)
1957年出生於東京。1982年東京大學理學部數學科畢業。1987年東京工業大學大學院理工學研究科博士課程修畢退學。曾任室蘭工業大學數理科學共通講座副教授、康乃爾大學數理科學研究所客座研究員,現為橫濱國立大學大學院工學研究院教授。主要著作包括《不可思議的數學》、《3小時讀通統計》、《拓樸學超入門》(共著)、《看漫畫學複雜網路》(共著)(Science-i新書)、《圖解雜學 機率》、《圖解雜學 機率模型》(Natsume社)、《Newton》雜誌監修工作。

譯者簡介

陳朕疆
自由譯者。清大生命科學學士、政大財務管理碩士、京都大學農學部交換一年。現為專職譯者,譯有多本科普、健康、商管書籍,歡迎批評指教。
信箱:[email protected]

內容目錄



前言 3

第 1 章 數據的特徵 9
1-1 當有人問你「每週喝幾次酒」,你會覺得很難回答嗎? 10
1-2 雖然平均月薪相同,但你不覺得哪裡奇怪嗎? 12
1-3 即使平均值相同,也不代表數據有相同特徵 14
1-4 將數據畫成「直方圖」會更好了解 16
1-5 配合數據特徵,選擇適當組距 18
1-6 由直方圖的形狀,可以看出某些數據不適合用「平均值」來描述 20
1-7 除了平均值,還有其他可以代表整體數據的數值 22
1-8 正中央數值—中位數 24
1-9 如何計算中位數? 26
1-10 哪個數值最多?什麼是眾數? 28
1-11 表示數據分布範圍的「全距」 30
1-12 如何表示數據分散程度? 32
1-13 用「變異數」來表示數據分散程度會方便許多 34
1-14 如何用變異數來計算數據分散程度? 36
章末練習 ① 38
專欄 1 統計虛擬貨幣之現價總額的首位數字,會有什麼結果? 40

第 2 章 機率的基礎 41
2-1 「樣本點」「樣本空間」與「事件」分別是什麼? 42
2-2 「和事件」「積事件」和「餘事件」 44
2-3 機率的定義 46
2-4 「事件機率」的計算 48
2-5 以「擲硬幣」為例,做機率的計算 50
2-6 丁半賭博中「丁」的機率和「半」的機率分別是多少? 52
2-7 不會同時發生的「互斥事件」 54
2-8 互斥的兩個「事件」有什麼關係? 56
2-9 發生「餘事件(非∼的事件)」的機率是多少? 58
2-10 什麼是「條件機率」? 60
2-11 學會使用方便的「乘法規則」 62
2-12 不被其他事件影響的「獨立事件」 64
章末練習 ② 66
專欄 2 首位數字的出現機率會符合「班佛定律」 68

第 3 章 隨機變數 69
3-1 由偶然決定數值的「隨機變數」 70
3-2 利用機率的性質,讓機率的計算變簡單 72
3-3 隨機變數和與之對應的「機率分配」 74
3-4 機率合計為「1」 76
3-5 計算隨機變數X 的期望值 78
3-6 即使各個事件的機率不一樣,也能求出期望值E(X) 80
3-7 「標準差」是變異數的正平方根 82
3-8 「平均值前後一個標準差」是最常出現的數值 84
章末練習 ③ 86
專欄 3 應用班佛定律找出偽造數據 90

第 4 章 分配 91
4-1 考慮順序時的「可能情況數」 92
4-2 不考慮順序時的「可能情況數」 94
4-3 由二項分配算出擲骰子結果的機率 96
4-4 由二項分配算出擲骰子結果的分配 98
4-5 擲骰次數增加,二項分配的形狀也會跟著改變 100
4-6 身高、雨量、產品誤差⋯⋯我們可以在許多數據上看到常態分配 102
4-7 常態分配的性質 104
4-8 常態分配中,幾乎所有事件都會在「3 σ 範圍」內 106
4-9 常態分配標準化的「標準常態分配」 108
4-10 從圖看出標準常態分配的性質 110
4-11 用標準常態分配來計算機率 112
章末練習 ④ 114
專欄 4 「末位數字」的分配也會偏向一邊嗎? 116

第 5 章 估計 117
5-1 從部分數據估計整體數據 118
5-2 由估計方法決定適當的樣本數 120
5-3 如何調查電視的收視率? 122
5-4 如何用統計方法估計收視率 124
5-5 估計一個數值點—「點估計」 126
5-6 估計一段區間—「區間估計」∼其一 128
5-7 估計一段區間—「區間估計」∼其二 130
5-8 信心水準的大小與信賴區間的關係 132
5-9 精靈寶可夢的收視率變化 134
5-10 信心水準提高,信賴區間也會變大 136
5-11 估計大谷翔平選手未來的打擊率,會得到什麼結果? 138
章末練習 ⑤ 140
專欄 5 「辛普森悖論」是什麼? 144

第 6 章 檢定 145
6-1 如果連續擲硬幣五次都是正面,可以說「這是一枚不公正硬幣」嗎? 146
6-2 如何檢定「這是一枚公正硬幣」的假設是否正確? 148
6-3 了解檢定的獨特概念與流程 150
6-4 檢定會因為「錯誤率」不同而得到不一樣的結果 152
6-5 當「五次有四次是正面」,可以說「這是一枚不公正硬幣」嗎? 154
6-6 即使「五次有四次正面」,也不能說「這是一枚不公正硬幣」 156
6-7 若錯誤率是5%,那麼當「十次有九次正面」,就可以說「這是一枚不公正硬幣」 158
章末練習 ⑥ 160
專欄 6 在日本買彩券應該買「連號」?還是買「號碼分散」? 164

第 7 章 相關 165
7-1 判斷兩群數據的關係 166
7-2 用「相關圖」將不同數據間的關係視覺化 168
7-3 什麼是「強相關」「弱相關」和「零相關」? 170
7-4 「相關係數」可以表示不同數據間的相關程度 172
7-5 「相關係數」的公式 174
7-6 相關係數的計算方法∼例一 176
7-7 相關係數的計算方法∼例二 178
7-8 相關係數的計算方法∼例三 180
7-9 相關係數的總整理 182
章末練習 ⑦ 184
專欄 7 「無法計算期望值」的抽獎 186

後記 187
主要參考文獻 189
索引 190

ISBN: 9789865408350

Brand Slider