內容簡介
#英國Amazon網站1,700多位讀者,四顆半星強力推薦!
#英國劍橋大學統計學權威,帶給你最有趣、最有價值的統計思維
統計學如何幫助我們了解世界?
當資料不完美,我們能做出可靠的結論嗎?
在資料科學的時代,統計學如何與時俱進?
當疫情來襲,我們如何自己做好觀念上的準備?
在許多領域中,統計學都是必備的技能;在人工智慧的時代,統計在商務上的運用也越來越重要。
但是一般的統計學內容,即使有嚴謹的定義和推論,卻總是感覺和現實世界隔了一層,不知如何運用,也很難理解它。
許多人在學校或許讀過一點統計學,大概知道隨機變數、標準差、平均數、中位數的意義,但到底該怎麼用?如何應用到現實世界的問題呢?
然而,這本書不同,它帶你用一種全新的方式來了解統計學。它從一些現實世界的問題開始,例如:
地球上有多少棵樹?
培根三明治的致癌風險有多高?
我們能夠相信群眾智慧嗎?
如何衡量藥物的有效性?
英國人的一生中有多少個性伴侶?
病人多的醫院,存活率比較高嗎?
半個世紀以來,全球人口成長的型態如何?
為什麼老男人的耳朵都很大?
配上生動有趣的圖表,讓讀者更容易進入,也展示了將資料化為圖表的強大力量與陷阱,以及溝通、道德問題在統計上的重要性。
本書的作者,英國劍橋大學的統計學權威大衛.史匹格哈特(David Spiegelhalter),十分擅長利用統計學說故事,而且概念清晰,盡量不談技術性的細節,他將統計學當中極易混淆的觀念,例如平均數和中位數、標準差、隨機試驗、母體、迴歸模型、隨機變數、預測區間和信賴區間、假說檢定(偽陽性、偽陰性問題)、P值、貝氏方法等等,以生動的實例和圖表,一步步清楚說明。
這本書也強調,統計學應該要教「PPDAC的問題解決循環」,即「問題─計畫─資料─分析─結論及溝通」。先從定義問題開始,再制定計畫,包括要測量什麼、如何測量,然後要收集資料,根據計畫展開統計分析,最後決定適當的結論,並清晰準確地溝通給外界知道。
正如一句名言所說的:「所有的模型都是錯的,但有些模型有用。」雖然統計的模型並不完美,但是如果我們想要得出一些結論,在數據的洪流當中增進對這個世界的理解,這些模型還是有幫助的。
作者強調,統計學對於已知的事實作匯總,對於未知的不確定性作出估計,最後應該以謙遜的態度,說明我們能從資料中得到什麼,不能得到什麼。要抱持小心審慎的態度,包括對於各種媒體報導的數據和說法,進行審慎的判斷。
本書對於統計學及其廣泛的應用作了深入解讀,讀這本書,你會對統計學產生興趣,知道統計學在做什麼,以及如何應用到實際問題上,還有統計學這門學問的美妙精髓與限制,這些將是讀者珍貴的收穫。
#英國劍橋大學統計學權威,帶給你最有趣、最有價值的統計思維
統計學如何幫助我們了解世界?
當資料不完美,我們能做出可靠的結論嗎?
在資料科學的時代,統計學如何與時俱進?
當疫情來襲,我們如何自己做好觀念上的準備?
在許多領域中,統計學都是必備的技能;在人工智慧的時代,統計在商務上的運用也越來越重要。
但是一般的統計學內容,即使有嚴謹的定義和推論,卻總是感覺和現實世界隔了一層,不知如何運用,也很難理解它。
許多人在學校或許讀過一點統計學,大概知道隨機變數、標準差、平均數、中位數的意義,但到底該怎麼用?如何應用到現實世界的問題呢?
然而,這本書不同,它帶你用一種全新的方式來了解統計學。它從一些現實世界的問題開始,例如:
地球上有多少棵樹?
培根三明治的致癌風險有多高?
我們能夠相信群眾智慧嗎?
如何衡量藥物的有效性?
英國人的一生中有多少個性伴侶?
病人多的醫院,存活率比較高嗎?
半個世紀以來,全球人口成長的型態如何?
為什麼老男人的耳朵都很大?
配上生動有趣的圖表,讓讀者更容易進入,也展示了將資料化為圖表的強大力量與陷阱,以及溝通、道德問題在統計上的重要性。
本書的作者,英國劍橋大學的統計學權威大衛.史匹格哈特(David Spiegelhalter),十分擅長利用統計學說故事,而且概念清晰,盡量不談技術性的細節,他將統計學當中極易混淆的觀念,例如平均數和中位數、標準差、隨機試驗、母體、迴歸模型、隨機變數、預測區間和信賴區間、假說檢定(偽陽性、偽陰性問題)、P值、貝氏方法等等,以生動的實例和圖表,一步步清楚說明。
這本書也強調,統計學應該要教「PPDAC的問題解決循環」,即「問題─計畫─資料─分析─結論及溝通」。先從定義問題開始,再制定計畫,包括要測量什麼、如何測量,然後要收集資料,根據計畫展開統計分析,最後決定適當的結論,並清晰準確地溝通給外界知道。
正如一句名言所說的:「所有的模型都是錯的,但有些模型有用。」雖然統計的模型並不完美,但是如果我們想要得出一些結論,在數據的洪流當中增進對這個世界的理解,這些模型還是有幫助的。
作者強調,統計學對於已知的事實作匯總,對於未知的不確定性作出估計,最後應該以謙遜的態度,說明我們能從資料中得到什麼,不能得到什麼。要抱持小心審慎的態度,包括對於各種媒體報導的數據和說法,進行審慎的判斷。
本書對於統計學及其廣泛的應用作了深入解讀,讀這本書,你會對統計學產生興趣,知道統計學在做什麼,以及如何應用到實際問題上,還有統計學這門學問的美妙精髓與限制,這些將是讀者珍貴的收穫。
作者簡介
作者簡介
姓名:大衛.史匹格哈特David Spiegelhalter
大衛.史匹格哈特爵士是英國的統計學家,劍橋大學統計實驗室(Statistical Laboratory)的溫頓風險與證據溝通中心(Winton Centre for Risk and Evidence Communication)主任。他是他所鑽研領域中最常被引用、且最具影響力的研究工作者之一,並獲選為2017-18年皇家統計學會(Royal Statistical Society)總裁。
譯者簡介
姓名:羅耀宗
台灣清華大學工業工程系、政治大學企業管理研究所碩士班畢業。曾任《經濟日報》國外新聞組主任、寰宇出版公司總編輯。所著《Google:Google成功的七堂課》(The Seven Success Lessons from Google)獲中華民國經濟部中小企業處九十四年度金書獎。另著有《第二波網路創業家:Google, eBay, Yahoo劃時代的繁榮盛世》(Netpreneurs 2.0)。譯作無數,包括《一課經濟學》、《選擇的自由》等。現為財金、商業、科技專業自由文字工作者、《哈佛商業評論》全球中文版特約譯者。
姓名:大衛.史匹格哈特David Spiegelhalter
大衛.史匹格哈特爵士是英國的統計學家,劍橋大學統計實驗室(Statistical Laboratory)的溫頓風險與證據溝通中心(Winton Centre for Risk and Evidence Communication)主任。他是他所鑽研領域中最常被引用、且最具影響力的研究工作者之一,並獲選為2017-18年皇家統計學會(Royal Statistical Society)總裁。
譯者簡介
姓名:羅耀宗
台灣清華大學工業工程系、政治大學企業管理研究所碩士班畢業。曾任《經濟日報》國外新聞組主任、寰宇出版公司總編輯。所著《Google:Google成功的七堂課》(The Seven Success Lessons from Google)獲中華民國經濟部中小企業處九十四年度金書獎。另著有《第二波網路創業家:Google, eBay, Yahoo劃時代的繁榮盛世》(Netpreneurs 2.0)。譯作無數,包括《一課經濟學》、《選擇的自由》等。現為財金、商業、科技專業自由文字工作者、《哈佛商業評論》全球中文版特約譯者。
內容目錄
目錄
致謝 11
導論 13
我們為什麼需要統計學╱將世界化為資料╱統計教學法╱關於本書
第1章 用百分比了解情況:類別資料和百分率 31
次數和百分比的溝通╱類別變數╱比較一對百分比
第2章 ?總和溝通數字 51
描述資料分布的廣度╱描述數字群之間的差異╱描述變數之間的關係╱描述趨勢╱溝通╱使用統計量說故事
第3章 為什麼我們還是要查看資料?母體與測量值 85
從資料中找答案──「歸納推論」的過程╱當我們有了全部的資料╱「鐘形曲線」╱母體是什麼?
第4章 什麼因造成什麼果?隨機試驗 105
「相關不表示有因果關係」╱到底什麼是「因果關係」?╱不能隨機化時,怎麼辦?╱當我們觀測到有關聯性,能夠怎麼做?╱我們能否從觀測性資料得出因果關係的結論?
第5章 利用迴歸將關係建模 129
迴歸線就是模型╱處理一個以上的解釋變數╱不同種類的反應變數╱超越基本的迴歸建模
第6章 演算法、分析和預測 149
尋找型態╱分類和預測╱分類樹╱評估演算法的表現╱機率「準確度」的組合測量值╱過度配適╱迴歸模型╱更複雜的技術╱演算法面對的挑戰╱人工智慧
第7章 對於正在發生的事,我們能有多確定?估計和區間 191
性伴侶人數╱拔靴法
第8章 機率:不確定性和變異性的語言 207
一點都不難的機率法則╱條件機率─當機率取決於其他的事件╱「機率」到底是什麼?╱如果我們觀測一切,機率從何處介入?
第9章 結合機率與統計 229
中央極限定理╱這個理論如何幫助我們確定估計值的準確度?╱計算信賴區間╱調查的誤差範圍╱我們應該相信誤差範圍嗎?╱當我們擁有所有的資料,會發生什麼事?
第10章 回答問題和宣稱發現:假說檢定 251
什麼是「假說」?╱為什麼我們需要對虛無假說做正式的檢定?╱統計顯著性╱運用機率論╱執行許多次顯著性檢定的危險╱內曼─皮爾遜理論
第11章 用貝氏方法,從經驗中找答案 299
貝氏方法是什麼?╱勝率和概似比╱概似比和法醫學╱貝氏統計推論╱意識形態之爭
第12章 事情怎麼會出錯? 331
「可再現性危機」╱蓄意詐欺╱「有問題的研究實務」╱研究人員實際上做了多少有問題的研究實務?╱溝通失敗╱文獻會出什麼問題?╱新聞辦公室╱媒體
第13章 如何把統計做得更好 351
改善產生的結果╱改進溝通╱協助找出不良的做法╱發表偏差╱評估一項統計宣稱或報導╱面對根據統計證據發表的聲明,要問的十個問題╱資料倫理╱良好的統計科學實例
第14章 結論 367
詞彙解釋 369
註釋 397
致謝 11
導論 13
我們為什麼需要統計學╱將世界化為資料╱統計教學法╱關於本書
第1章 用百分比了解情況:類別資料和百分率 31
次數和百分比的溝通╱類別變數╱比較一對百分比
第2章 ?總和溝通數字 51
描述資料分布的廣度╱描述數字群之間的差異╱描述變數之間的關係╱描述趨勢╱溝通╱使用統計量說故事
第3章 為什麼我們還是要查看資料?母體與測量值 85
從資料中找答案──「歸納推論」的過程╱當我們有了全部的資料╱「鐘形曲線」╱母體是什麼?
第4章 什麼因造成什麼果?隨機試驗 105
「相關不表示有因果關係」╱到底什麼是「因果關係」?╱不能隨機化時,怎麼辦?╱當我們觀測到有關聯性,能夠怎麼做?╱我們能否從觀測性資料得出因果關係的結論?
第5章 利用迴歸將關係建模 129
迴歸線就是模型╱處理一個以上的解釋變數╱不同種類的反應變數╱超越基本的迴歸建模
第6章 演算法、分析和預測 149
尋找型態╱分類和預測╱分類樹╱評估演算法的表現╱機率「準確度」的組合測量值╱過度配適╱迴歸模型╱更複雜的技術╱演算法面對的挑戰╱人工智慧
第7章 對於正在發生的事,我們能有多確定?估計和區間 191
性伴侶人數╱拔靴法
第8章 機率:不確定性和變異性的語言 207
一點都不難的機率法則╱條件機率─當機率取決於其他的事件╱「機率」到底是什麼?╱如果我們觀測一切,機率從何處介入?
第9章 結合機率與統計 229
中央極限定理╱這個理論如何幫助我們確定估計值的準確度?╱計算信賴區間╱調查的誤差範圍╱我們應該相信誤差範圍嗎?╱當我們擁有所有的資料,會發生什麼事?
第10章 回答問題和宣稱發現:假說檢定 251
什麼是「假說」?╱為什麼我們需要對虛無假說做正式的檢定?╱統計顯著性╱運用機率論╱執行許多次顯著性檢定的危險╱內曼─皮爾遜理論
第11章 用貝氏方法,從經驗中找答案 299
貝氏方法是什麼?╱勝率和概似比╱概似比和法醫學╱貝氏統計推論╱意識形態之爭
第12章 事情怎麼會出錯? 331
「可再現性危機」╱蓄意詐欺╱「有問題的研究實務」╱研究人員實際上做了多少有問題的研究實務?╱溝通失敗╱文獻會出什麼問題?╱新聞辦公室╱媒體
第13章 如何把統計做得更好 351
改善產生的結果╱改進溝通╱協助找出不良的做法╱發表偏差╱評估一項統計宣稱或報導╱面對根據統計證據發表的聲明,要問的十個問題╱資料倫理╱良好的統計科學實例
第14章 結論 367
詞彙解釋 369
註釋 397
ISBN: 9789860657968